
An Ultrasonic Compass for Context-Aware Mobile

Applications

by

Kevin John Wang

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 7, 2004

Certified by. .
Seth Teller

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

An Ultrasonic Compass for Context-Aware Mobile Applications

by

Kevin John Wang

Submitted to the Department of Electrical Engineering and Computer Science
on May 7, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

If we are to realize the everyday benefits promised by pervasive computing and context-
aware applications, we must first develop the infrastructure to provide contextual location
and orientation information through pervasive computing elements. I lay the foundations
for leveraging the Cricket indoor location system to supply orientation information. I first
characterize the use of ultrasound in Cricket for distance and orientation measurements. I
then propose a set of methods to calculate 3-DOF orientation from an array of well placed
ultrasonic sensors operating in the Cricket system. I design and implement a prototype
of this Cricket Compass using a combination of hardware and software and demonstrate
end-to-end functionality of the system.

Thesis Supervisor: Seth Teller
Title: Associate Professor

3

4

Acknowledgments

First, I thank Professor Seth Teller for giving me the opportunity and support to pursue
this research. His enthusiasm and never-ending stream of ideas have been both educational
and of great encouragement to me while under his supervision.

I also thank the rest of the Cricket Team for making this entire endeavor possible. I
especially thank Bodhi Priyantha for his help with everything Cricket and Compass related.

I braved graduate student life together with my office-mates Roshan Baliga and Jonathan
Wolfe. Thanks to both for making the lab fun, even during those times when it should not
have been.

Finally, I am deeply grateful to my family for always being there. Without them I would
have never have made it this far.

5

6

Contents

1 Introduction 13
1.1 Motivation . 14
1.2 The Design Space . 16
1.3 Overview . 18

2 Steps Towards Orienting the Cricket Compass 19
2.1 Existing Orientation Systems . 19

2.1.1 Constellation . 20
2.1.2 HiBall . 20
2.1.3 Whisper . 21
2.1.4 Commercial Systems . 21

2.2 Groundwork for the Cricket Compass . 22
2.2.1 Calculating Planar Orientation . 22

2.3 Challenges in Orienting the Cricket Compass 24
2.3.1 Characterizing Cricket Ultrasound 25
2.3.2 The Differential Distance Problem 28
2.3.3 Disambiguating θ . 31
2.3.4 Implementation Experience . 32

3 Theory of Operation 37
3.1 Cricket Infrastructure . 37
3.2 Three-Dimensional Local Orientation . 38
3.3 Obtaining Accurate Differential Distances 42
3.4 Registration to Global Orientation . 42

3.4.1 Centroid Relative Coordinates . 43
3.4.2 Rotation of the Planes . 44
3.4.3 Rotation in the Plane . 45

4 The Cricket Compass Prototype 47
4.1 Hardware Design Parameters . 48

4.1.1 Sensor Array . 48
4.1.2 Analog-to-Digital Conversion . 51

4.2 Software Design Parameters . 52
4.3 Testing and Modifications . 52

4.3.1 Correlation . 53
4.3.2 Filtering . 55
4.3.3 Pulse Shaping . 56

7

4.3.4 Error Detection . 59

5 Results 61
5.1 Localizing Beacons . 61

5.1.1 Setup and Procedure . 61
5.1.2 Analysis . 63

5.2 End-to-End Orientation . 65
5.2.1 Setup and Procedure . 66
5.2.2 Analysis . 67

5.3 Future Work . 69

6 Contributions 71

A Compass Hardware Design 73
A.1 Analog Ultrasound Gain Circuit . 73
A.2 Sensor Array Specifications and Naming . 74
A.3 Murata MA40S4R Ultrasonic Sensor Information 75

B Compass Functionality 77
B.1 Setup . 77
B.2 Demonstration . 77
B.3 MATLAB functions . 78

8

List of Figures

1-1 Block diagram overview of the Cricket Compass. 17

2-1 Determining the angle of orientation along the horizontal plane. 23
2-2 A rotated compass leads to a difference in distances between the beacon and

each of the receivers. 24
2-3 An amplified ultrasound pulse on a Cricket listener. 26
2-4 A photo of the version 2 Cricket, which can function as a listener or a beacon. 27
2-5 Receivers R1 and R2 can measure the differential distance from a far-away

beacon. 29
2-6 An observed phase ∆ can actually correspond to an infinite number of pos-

sible real phases, all separated by 2π. 30
2-7 θ is ambiguous; there are two beacon positions B1, B2 that result in the same

θ at the compass. 31
2-8 Two ultrasound receivers mounted on a precision rotating platform. 32
2-9 A comparison of ultrasound receiver compass performance. 34

3-1 Determining the angle θ between the vector to the beacon and the axis formed
by the receiver pair. 38

3-2 The intersection of two circles presents two possible beacon positions. . . . 39
3-3 Determining the position of a beacon using an array of receivers. 40
3-4 The second rotation step in determining absolute orientation. 45

4-1 A block diagram of the Cricket Compass implementation. 47
4-2 A few possible ultrasound sensor array geometries. 49
4-3 A comparison of sensor pair coverage for different geometries. 50
4-4 A photo of the actual compass hardware prototype. 51
4-5 A plot of four ultrasound waveforms coming from the Compass hardware. . 53
4-6 A plot of the six inter-sensor normalized cross correlations for varying time

delays. 54
4-7 A plot of error in calculated orientation using two different methods for the

differential distance measurement. 55
4-8 Plots of different types of ultrasound signals and resulting normalized cross

correlations. 57
4-9 The standard Cricket ultrasound pulse and the modified pulse for the Compass. 58
4-10 A visualization of the differential distances on sensor pairs. 59

5-1 Annotated photos of beacon localization experiment. 62
5-2 Illustration of Compass rotation in the beacon localization experiment. . . . 63
5-3 A plot of beacon localization using the Compass. 64

9

5-4 Annotated photos of Compass end-to-end demonstration. 65
5-5 Annotated photos depicting the Compass and Cricket coordinate spaces in

the end-to-end demonstration. 66
5-6 Visualization of estimated Compass end-to-end orientation. 68

A-1 Ultrasound analog gain circuit. 73
A-2 Numbering scheme and coordinate axes defined for the ultrasound sensor array. 74
A-3 Murata ultrasonic sensor physical dimensions. 75
A-4 Murata ultrasonic sensor frequency response. 75
A-5 Murata ultrasonic sensor directivity in sensitivity. 75

10

List of Tables

5.1 Mean error and standard deviation of error in each coordinate axis. 65
5.2 Results of end-to-end orientation demonstration. 67

A.1 I mounted the sensors using the circuit board inter-hole spacing of 2.54mm.
This table shows the x and y positions of the center of the sensors in grid
units where 4 grid units = 1 inter-hole space = 2.54mm. 74

A.2 Sensor pair naming, orientations, and separation distances used for position
calculations. 74

11

12

Chapter 1

Introduction

If we are to realize the everyday benefits promised by pervasive computing and context-

aware applications, we must first develop the foundation systems that will make those

applications easy to develop, to deploy, and to maintain. We must develop systems that

provide the necessary contextual information with accuracy, robustness, and scalability. We

must also address the technical challenges of engineering these systems for use by humans

and mobile devices in indoor environments.

Researchers at the MIT Computer Science and Artificial Intelligence Laboratory are

developing the Cricket indoor location system, a ubiquitous and precise location infrastruc-

ture for pervasive computing. In this thesis I lay the foundations for leveraging the Cricket

infrastructure to supply contextual orientation information. I will use the term “Cricket

Compass” throughout to denote the collection of hardware designs, algorithms, and software

applications that enable the delivery of orientation information through Cricket.

First, I characterize the design constraints imposed by the current revision of Cricket

hardware and software and discuss them in relation to the desired properties and design

targets of the Cricket Compass. Specifically, I carefully review the properties and manipula-

tion of ultrasound in Cricket used for calculating distance estimates. I then discuss methods

for determining orientation by surveying current orientation systems including Priyantha

et al.’s seminal work on using ultrasonic phase differentials to infer planar orientation.

I develop methods to accurately measure ultrasonic phase differentials and propose an

algorithm to infer three-dimensional orientation with respect to the source of ultrasonic

pulses. I design and construct a hardware prototype of the Cricket Compass and demon-

13

strate end-to-end functionality of the system. Finally, I characterize the performance of the

Cricket Compass and outline methods for improvement.

1.1 Motivation

Imagine that you have made an appointment to meet with a professor at his office in MIT’s

Ray and Maria Stata Center. You have heard that the new Stata Center has a very unique

design, and you anticipate that it will be difficult to find your way among the nine twisting

and turning floors that house hundreds of researchers. Upon arriving, you find the posted

maps to be of limited use as you struggle to orient yourself without the aid of regularities

in the architecture or useful landmarks. Directions from people along your way fail to map

easily into the real environment. You give up for the moment and grudgingly stop at the

information desk to ask for help.

Now imagine that instead of giving you more directions, the helpful staffers supply you

with a handheld navigation device. You input your destination, and the device gives you

directions in context to an automatically updating map display that orients itself to your

current viewpoint. Navigating suddenly becomes easy as you match features and landmarks

in your view to those displayed on the device.

During your journey, you also notice a maintenance staffer using a different navigation

device to locate and service a faulty floor vent. As the staffer walks along, the device

projects an outline of the floor venting pipe so he can locate a malfunctioning junction.

Amazed at your recent experience, you start to see how applications inside buildings, such

as offices, shopping malls, airports, and homes, have the potential to fundamentally change

the way we interact with our immediate environment, in which computing elements will be

“ubiquitous” or “pervasive.”

The scenario described above highlights the utility of context-aware applications, a com-

pelling class of applications in emerging pervasive computing environments. These appli-

cations can adapt their behavior according to an environmental context, such as physical

location. Another important environmental context is a device or user’s orientation with

respect to one or more landmarks in a region. A context-aware computing application can

benefit from knowing orientation, for instance by providing the ability to adapt a user in-

terface to the direction in which a user is facing. Priyantha et al. [7] and Teller et al. [8]

14

describe in detail several compelling applications that are made possible by the availability

of location information supplemented with orientation information:

1. Wayfinder: This application runs on a handheld computer to aid sighted or blind

people in navigation to a destination through an unfamiliar environment. For example,

the application could lead building visitors from an entry lobby to an office or seminar

room for a meeting.

2. Viewfinder: This application allows a user to point in a direction and specify a desired

environmental scope, for example, a range and a sweep angle. Using an active map

integrated with a resource discovery system, the application then returns a represen-

tation of devices and services in the desired direction and scope. This then enables

the user to interact with those services and devices via representations on the map.

3. Information overlay: A user’s view of an environment is overlaid with information

about objects present in that environment. The view and information presented

actively adapt to the orientation of the user. For example, this capability could allow

users to “see” through walls by overlaying occluded objects and landmarks on the

wall.

4. Virtual tagging: Location and orientation information enables a user to point at

objects in a virtual representation of the users environment. The user can now quickly

create or modify database information about the location of landmarks and objects

in the environment. For example, surveyors and contractors can mark buried service

lines and building tenants can log physical plant maintenance requests.

5. Active signage: Location and orientation-aware displays can dynamically configure

themselves to display the most critical and pertinent information. For example, a

sign could automatically direct users to meetings or talks on the day that they are

scheduled. In an emergency, the sign could display a route directing users along an

escape route to the nearest exit.

The Cricket Compass can provide the capability required to supply context-aware ap-

plications with orientation information. The Cricket Compass provides accurate knowledge

of its own position and orientation and can combine with contextual maps to present the

15

user with contextually rich data, such as the location of resources and the means to reach

those resources.

1.2 The Design Space

Obtaining location and orientation information for applications in an indoor environment

in an unobtrusive and private manner is a challenging task. Multi-path effects and dead

spots inside buildings present harsh conditions to radio signals in indoor environments. A

traditional magnetic compass does not work well in many buildings because of electromag-

netic interference from computers and monitors. In addition, user-privacy concerns are an

important consideration in the successful deployment of these applications. The infrastruc-

ture must require minimal administration because there can be potentially several thousand

devices in a typical building.

I use the Cricket indoor location system to obtain precise location information. The

current Cricket location system uses a network of active beacons and passive listener devices

to provide location information accurate to within several centimeters. The active beacons

mounted in the environment use a combination of radio frequency (RF) and ultrasound

technologies for communication and ranging. Passive listeners attach to mobile or static

devices of interest and use the network of active beacons to determine location information.

The distributed Cricket architecture has three significant advantages. First, there is no

centralized controller or database to track users and devices. Second, Cricket scales well as

the number of locatable devices increases because the listeners attached to those devices are

passive and do not increase signal contention. Third, Cricket’s decentralized architecture

simplifies the system and makes it easy to deploy.

The Cricket Compass leverages the existing Cricket indoor location system by assuming

there are beacons that periodically broadcast ultrasound pulses from known locations. The

Compass also assumes that these pulses can be associated with the broadcasting beacons

at the Compass, which itself can be localized. These assumptions are valid for a Cricket lis-

tener; therefore, I design the Cricket Compass as a Cricket listener augmented to determine

orientation information in a manner that preserves the advantages of the Cricket system.

In keeping with the goals of Cricket, the Compass also attempts to solve problems in ways

that are realizable in hardware with physically small dimensions.

16

Cricket Listener

Existing Cricket Infrastructure

Cricket Beacons

receive
amplify
digitize

apply orientation
algorithms

(x, y, z)
position

3-DOF
orientation

The Cricket Compass

translation into
Cricket beacon

coordinate space

ultrasound pulses

ultrasound
pulses

RF
packets

local 3-DOF
orientation

receive trigger

beacon
positions

listener position

waveform
data

Figure 1-1: Block diagram overview of the Cricket Compass.

The orientation problem primarily reduces to accurately determining the orientation of

the Compass with respect to a Cricket beacon in the Compass’s own reference coordinate

system. With estimates of orientation to several beacons, the end-to-end problem is then

determining the orientation of the Compass in the globally consistent coordinate system

maintained across all beacons and listeners.

Figure 1-1 shows the overall Cricket Compass design in a high-level block diagram. The

figure distinguishes between parts of the Compass functionality that are inherited from the

Cricket Listener and parts that implement the orientation capability. The figure also shows

the high-level inputs and outputs of each block.

In order to accurately determine the three-dimensional orientation of the Compass with

respect to a Cricket beacon, the Compass focuses on processing the ultrasound pulses emit-

ted by the beacons. First, the Compass receives an ultrasound pulse on an array of well-

placed ultrasonic receivers. The Compass amplifies and digitizes the ultrasonic waveforms

output by the receivers and applies several algorithms to the waveforms to estimate its

orientation to the ultrasound source. Finally, the Compass combines estimates of relative

orientation to beacons with Cricket location data in order to estimate an orientation in

global coordinates.

17

1.3 Overview

In Chapter Two, I detail my experience in approaching the orientation problem. I discuss

other tracking and location systems, and present experience with Priyantha et al.’s planar

orientation method for the Cricket system. In Chapter Three, I present the theory behind

the operation of the Cricket Compass. I show how to localize beacons using an array of

receivers, and how to determine orientation based on known beacon positions.

In Chapter Four, I describe the design and implementation of a Cricket Compass proto-

type, incrementally building up to Chapter Five, where I characterize the performance of the

prototype and demonstrate end-to-end functionality. I then suggest areas for improvement

in future implementations. I list the contributions of this thesis in Chapter Six.

In Appendix A, I present the specific hardware implementation details including circuit

diagrams and sensor information. In Appendix B, I describe the setup and demonstration

of the Cricket Compass and include the supporting source code.

18

Chapter 2

Steps Towards Orienting the

Cricket Compass

The Cricket indoor location system provides pervasive computing applications with an in-

frastructure that addresses user privacy concerns, scales well, and is also easy to deploy and

maintain. In order to extend Cricket to provide orientation data, I examine other systems

that attempt to solve similar problems and review Priyantha et al.’s seminal work on ori-

enting the Cricket Compass. I outline the specific challenges of providing three-dimensional

orientation using the current Cricket location system. I then present experimental experi-

ence from attempts at solving those challenges.

2.1 Existing Orientation Systems

Virtual reality, interactive computer graphics, and mobile robotics applications have moti-

vated the development of several systems to track the position and orientation of users and

interesting objects. Welch and Foxlin [11] list the design goals of an ideal device that would

satisfy the requirements of almost all position and orientation tracking applications. This

device would be:

1. Small: the size of a small microchip;

2. Self-contained: have no other parts mounted in the environment or the user;

3. Complete: track all three degrees of freedom for position and all three degrees of

freedom for orientation;

19

4. Accurate: have sub-centimeter accuracy in position and sub-degree accuracy in ori-

entation;

5. Fast: provide high position and orientation update rates with low latency;

6. Immune to Occlusions: would not require line of sight to anything else;

7. Robust: resist performance degradation from light, sound, heat, magnetic fields, radio

waves, and other environmental effects;

8. Wireless: run without wires and have an unlimited range of operation;

9. Scaleable: the above hold true no matter how many users or devices are being tracked.

Systems use a variety of technologies including electromagnetic, optical, acoustic, radio

frequency, inertial, and mechanical sensing. No systems exist today that satisfy all these

criteria. A few systems do quite well on a number of criteria, but because these systems

are meant for virtual reality tracking applications, they are generally highly complex, cen-

tralized, and limited in range. These properties make them unsuitable for the types of

pervasive computing applications the Cricket Compass intends to support. However, by

reviewing the designs and tradeoffs made in these systems, I develop an understanding of

what techniques are available and how to make the proper design choices on the Cricket

Compass.

2.1.1 Constellation

The Constellation system uses a combination of accelerometers, gyroscopes, and ultrasonic

sensors to estimate position and orientation [3]. Like Cricket, Constellation relies on an

active set of ultrasonic beacons to determine the initial tracking position of a device. Con-

stellation uses a Kalman filter to reject corrupted measurements and refines orientation

estimates using inertial sensors. However, the precise coordination that is required between

receivers and transmitters in this system makes it unsuitable for large-scale deployment.

2.1.2 HiBall

The HiBall Tracker uses synchronized infrared LEDs and precision optics to determine

position with sub-millimeter accuracy with less than a millisecond latency [10]. HiBall

20

deploys large arrays of hundreds to thousands of LED beacons on ceiling tiles and requires a

sophisticated sensor package of infrared sensors and optical lenses. Position and orientation

estimates are obtained by sighting the relative angles and positions of the ceiling LEDs.

Both the sensor and the LED arrays are centrally synchronized by a computer to control

the LED intensity and lighting patterns required to determine position. The system requires

extensive wiring, which makes it expensive and difficult to deploy. It also suffers from the

need for central coordination.

2.1.3 Whisper

Whisper is an acoustic tracking system that uses a wide bandwidth signal to take advantage

of low frequency sound’s ability to diffract around objects [9]. Acoustic systems usually

suffer from low update rates and are not very robust to environmental noise. Whisper

applies spread spectrum concepts to acoustic tracking in order to overcome those problems.

Whisper recursively tracks the correlation between a transmitted and received version of

a pseudo-random wide-band acoustic signal. A Kalman filter is also used to reduce the

computational expense of correlation calculations. The communication-intensive methods

of Whisper make it hard to scale, and its use of audible frequencies make it undesirable for

pervasive computing applications.

2.1.4 Commercial Systems

Commercial magnetic motion trackers have been used in virtual reality and simulation ap-

plications such as head-mounted displays and biomechanical motion capture: Ascension [1],

Polhemus [6], and Northern Digital [2] all offer these motion tracking products. They

provide estimates of the position and orientation of the target object by sending magnetic

pulses and detecting the change of field strength along three orthogonal axes. These systems

usually require a centralized coordination between the magnetic transmitters and receivers,

and are limited in their range. They are susceptible to magnetic interference from the pres-

ence of metals or other conductive materials in the environment, which causes problems in

many indoor environments.

21

2.2 Groundwork for the Cricket Compass

Having surveyed some existing orientation systems, I put forth a set of principles that should

guide the design of the Cricket Compass in context to its support for pervasive computing

applications. The Cricket Compass should ideally be:

Complete: able to track all three degrees of freedom for position and all three degrees of

freedom for orientation;

Accurate: have sub-centimeter accuracy in position and sub-degree accuracy in orienta-

tion;

Unobtrusive: have small physical size, avoid the use of wires and visible or audible tech-

niques;

Unrestricted: functions throughout an arbitrarily large work volume;

Robust: resist performance degradation from light, sound, heat, magnetic fields, radio

waves, and other environmental effects;

Scaleable: the above hold true no matter how many users or devices are instrumented.

All six principles above apply to the approach of the Cricket location system; therefore,

the Compass should supplement Cricket’s capabilities while adhering to these principles.

In Section 1.2, I outlined the design space for the Cricket Compass. Recall that through

the Cricket indoor location system, a set of active RF and ultrasound beacons allows me

to determine the 3D position coordinates of a Cricket listener. With the Cricket system in

place, Priyantha et al. [7] describe a preliminary design and implementation of the Cricket

compass system consisting of a set of active Cricket beacons, passive hardware sensors, and

associated software algorithms.

2.2.1 Calculating Planar Orientation

Figure 2-1 shows a beacon B, and a compass with two ultrasonic receivers, R1 and R2, which

are located at a distance L apart from each other. The angle of rotation of the compass,

θ, with respect to the beacon B, is related to the difference in distances d1 and d2, where

d1 and d2 are the distances of receivers R1 and R2 from B. The vertical and horizontal

distances from the center of the compass to B are denoted by z and x, respectively.

22

d1 d2 z

L
θHeading

Beacon B (on ceiling)

Horizontal plane
x

R1

R2

Figure 2-1: Determining the angle of orientation along the horizontal plane, θ, using distance
estimates. The heading is perpendicular to the line joining the ultrasonic compass receivers,
R1 and R2, which are placed at a distance L from each other.

Figure 2-2 shows the beacon B from Figure 2-1 projected onto the horizontal plane along

which the compass is aligned. In this figure, x1 and x2 are the projections of distances d1

and d2 on to the horizontal plane. Here I must assume that I hold the compass parallel to

the horizontal plane.

From Figure 2-1:

x2
1 = d2

1 − z2 (2.1)

x2
2 = d2

2 − z2 (2.2)

x =
√

d̄2 − z2

where d̄ ≈ d1+d2
2 when d1, d2 � L.

From Figure 2-2:

x2
1 = (

L

2
cos θ)2 + (x− L

2
sin θ)2

x2
2 = (

L

2
cos θ)2 + (x +

L

2
sin θ)2

⇒ x2
2 − x2

1 = 2Lx sin θ

23

θ

θ

x1 x x2

L/2

L/2

Figure 2-2: A rotated compass leads to a difference in distances between the beacon and
each of the receivers. This figure is the result of projecting the beacon from Figure 2-1 onto
the horizontal plane of the compass.

Substituting for x2
1 and x2

2 from Equations 2.1 and 2.2, I get:

sin θ =
d2 + d1

2Lx
· (d2 − d1) (2.3)

I can rewrite this as:

sin θ =
d2 − d1

L
√

1− (z
d̄
)2

(2.4)

Equation 2.4 shows that I can estimate two quantities in order to determine the orien-

tation of the compass with respect to a beacon: (i) (d2 − d1), the difference in distances

of the two receivers from the beacon, and (ii) z/d̄, the ratio of the beacon height over the

compass plane and the distance of the beacon from the center of the compass. The location

information supplied by the Cricket infrastructure allows us to compute z/d̄ easily from

the coordinates of a beacon and the coordinates of a listener. The goal then is to estimate

(d2 − d1) with high precision in order to produce an accurate estimate of θ.

2.3 Challenges in Orienting the Cricket Compass

Using Priyantha et al.’s differential distance method as a foundation to deriving orientation,

I tackle several problems in order to realize the Cricket Compass. In this section, I elucidate

24

and characterize the primary problems in delivering accurate end-to-end results in context

to the design and technology constraints of the Compass. I discuss how I attacked these

problems and evaluate the effectiveness of these approaches. The experience I gained in this

section forms the foundation for the solutions to the problems described in Chapter Three,

where I propose the methods for delivering end-to-end Cricket Compass functionality.

2.3.1 Characterizing Cricket Ultrasound

Typical ultrasound ranging systems generate brief ultrasound pulses and use time-of-flight

measurements to generate distance estimates based on the speed of sound. All versions of

Cricket so far have used this simple principle to generate distance estimates for position

calculation. The typical challenges and tradeoffs in using ultrasound are:

Multipath: Because walls and objects in a room reflect acoustic signals well, an ultrasound

receiver can receive a signal that is the sum of a direct path signal and one or more

reflected signals of longer path lengths. A great feature of pulsed ultrasound is that

multipath reflections can generally be rejected by detecting the first pulse that arrives.

The first pulse is guaranteed to have arrived via the direct path unless the signal is

blocked. This feature comes from the fact that ultrasound travels at the speed of

sound, allowing a significant time difference between direct and reflected path pulses.

Range and Directionality: A desirable property for the transmission of ultrasound is

omnidirectionality, which places no restrictions on performance as transmitters and

receivers vary in position and orientation. Another desirable property is long range.

While transducers with smaller active surfaces help to achieve wider directionality,

smaller active surfaces also translate into reduced range because the efficiency of an

ultrasonic transducer is proportional to its active surface area.

Accuracy: Accurate distance measurements depend on accurate timing and accurate esti-

mation of the speed of sound, which depends significantly on temperature, humidity,

and air currents. Accurate timing depends on pulse reception. Highly resonant trans-

ducers driven by a train of cycles at the resonant frequency produce high amplitude

pulses to improve range. However, the narrow bandwidth of the transducers also

results in a received waveform that “rings up” gradually for several cycles, peaks,

25

Figure 2-3: An amplified ultrasound pulse on a Cricket listener. The Cricket beacon is
transmitting at a distance ≈ 1.5 m from the listener at ≈ 45◦ elevation. The received pulse
rings up, peaks, and then rings down over the course of almost one hundred ultrasound
periods, even though only six periods of ultrasound drive the transmitter. The horizontal
scale is 500 mVolts per division. The horizontal scale is 250 µseconds per division on the
left and zoomed into 100 µseconds per division on the right.

and then gradually rings down. Detection and timing of this waveform is the most

important factor in achieving high accuracy.

Occlusion: Although ultrasound is more tolerant than optical methods, the acoustic nature

of ultrasound still requires a general line of sight between transmitters and receivers.

Noise and Interference: Operating at the higher and inaudible ultrasound frequency

range helps to reduce the ambient noise level, but jingling of keys generates high

amplitude spurious ultrasound that is difficult to handle.

A fundamental step in leveraging the Cricket ultrasound for estimating orientation is

to characterize Cricket’s ultrasound transmit and receive behavior and to understand the

underlying hardware that support ultrasound capabilities.

Cricket Ultrasound Hardware

All versions of Cricket use a standard method to generate the ultrasound pulses. The

standard method is to generate a 40 kHz square wave pulse by toggling a pin on the

Cricket microcontroller at the correct frequency for several cycles. The 40 kHz square

wave pulse then passes through an amplification stage. The specific implementation of

this amplification stage has varied across different Cricket versions, but in each version,

26

Figure 2-4: A photo of the version 2 Cricket, which can function as a listener or a beacon.

the amplification is designed to match the receive circuit in order to amplify the pulse to

produce the desired range. The amplified pulse then drives the ultrasound transmitter to

produce an ultrasound pulse.

All versions of Cricket use an ultrasound receiver coupled with two stages of analog

gain, which affects both range and sensitivity to noise. As discussed previously, the narrow

bandwidth of the transmitters and receivers results in a received waveform that “rings up”

gradually for several cycles, peaks, and then gradually rings down. Figure 2-3 shows an

actual oscilloscope capture of an amplified ultrasound pulse on the receive-side. From the

receive-side amplified output, Cricket version-specific receive circuits use various methods

to detect the presence of an ultrasound pulse.

The receive circuit on the version 1 Crickets uses a phase-lock-loop to detect the incoming

ultrasound signal. Unfortunately, the phase-lock-loop takes a variable amount of time to

lock on to the received pulse and limits the version 1 distance measurement accuracy to

one meter. The receive circuit on the version 2 Crickets currently uses a peak detector to

detect the envelope of the ultrasound pulse. The rising envelope feeds into a comparator

that toggles the ultrasound receive pin on the microcontroller. The comparator is biased

at a threshold that is above the ambient noise ceiling; this generally causes the ultrasound

receive pin to switch high on one of the rising cycles of the received pulse. Adding the

variable delay in the software layers of the Cricket, the end-to-end distance accuracy of the

version 2 Crickets is on the order of several centimeters. Figure 2-4 shows a photo of the

version 2 Cricket.

27

Cricket Ultrasound Characteristics

The unpredictable shape of the received ultrasound waveform presents a major obstacle

to improving Cricket’s ranging accuracy. Pulses generally decrease in ring-up rate and

amplitude as distance increases. This trend, however, is difficult to discern accurately

because directionality in transceivers also has a large effect on ring-up rate and amplitude—

the difference in two received waveforms observed by moving a listener a fixed distance, but

maintaining a fixed orientation, is oftentimes indiscernible from the difference observed by

tilting or rotating a listener by a few degrees. To complicate the situation, when range is

low, the high gain circuit can saturate and rail, introducing yet another variable into the

received waveform characteristic. In the next section, 2.3.4, I briefly describe some work

that I carried out to build up this characterization and show how the Cricket Compass

circumvents the imprecise absolute ranging problem.

2.3.2 The Differential Distance Problem

The accuracy of the Compass orientation estimation depends fundamentally on the mea-

sured quantity (d2−d1), the differential distance. There are two main approaches to tackling

this problem. The first approach is to determine d1 and d2 each with high accuracy; this

involves obtaining precise absolute distances. The second approach is to determine the

quantity (d2− d1) with high accuracy. I will show that obtaining precise absolute distances

within the scope of the current hardware and technologies is difficult, and that obtaining

precise differential distances instead is much more feasible.

Obtaining Precise Absolute Distances

Precisely measuring d1 and d2 separately is quite difficult. Consider, for example, a situation

where L = 5cm, and θ = 10◦, with a beacon at a distance of 2 meters and a height of 1

meter from the receivers. From Equation 2.4, the value of (d2 − d1) in this case is only

≈ 0.6cm.

Cricket’s current ultrasound capability does not permit it to measure distances with

sub-centimeter precision. Cricket currently uses a threshold detector on the amplified ul-

trasound, which results in distance accuracy on the order of several centimeters. This

accuracy is insufficient to achieve precise orientation estimates. While I could increase the

28

From beacon

L

d1−d2

d1 d2

Figure 2-5: Receivers R1 and R2 can measure the differential distance from a far-away
beacon.

value of L in order to decrease the accuracy demands on (d2−d1), this requires that I must

space the receivers further apart. Increasing the receiver separation distance, however, runs

counter to the goal of building a compass with physically small dimensions for handheld

applications.

A more elaborate method than the current threshold detector is necessary to solve

the absolute distance problem. Due to the ultrasound transmit and receive characteristics

described in Section 2.3.1, one idea is to extrapolate the waveform start time from an

equation that fits the envelope of the ultrasound wave.

To test this idea, I used exponential, first-order, and second-order equations to fit the

rising peaks of the ultrasound wave using a least-squares method. Both the distance between

ultrasound transmitter and receiver and the angle of reception on the receiver with respect

to its vertical axis influence the shape of the ultrasound waveform envelope. However,

there is no discernible predictability in those factors, and the result is that the accuracy

of the waveform start time estimated by the best-fit equations, when used to calculate a

distance estimate, perform worse than the current threshold detection scheme. In addition,

the ultrasound waveforms are so sensitive to minute variations in those factors that this

method cannot even be used to accurately determine differential distances on closely spaced

receivers.

Obtaining Precise Differential Distances

Priyantha et al.’s solution to the differential distance problem uses the phase difference

between the ultrasonic signals at two different receivers to determine differential distance

29

Δ(Δ–2π)
(Δ+2π)

(Δ+4π)

Figure 2-6: An observed phase ∆ can actually correspond to an infinite number of possible
real phases, all separated by 2π.

measurements with sub-centimeter precision.

Consider two ultrasonic receivers R1 and R2 located a distance L apart, as shown in

Figure 2-5. Let d1 and d2 be the distances to receivers R1 and R2 from beacon B. Let

δd = d1 − d2 and let W1 and W2 be the ultrasonic waveforms received by R1 and R2 from

B. The phase difference between the waveforms at the two receivers, φ, depends on the

difference in distances traversed from B to the receivers by the ultrasonic signal and the

wavelength λ of the signal, and may be expressed as:

φ =
(δd)
λ

· 2π (2.5)

φ denotes the actual phase difference between the two signals.

This approach, however, poses a phase ambiguity problem. Without knowing the start

times of W1 and W2, I can only measure a phase difference ∆, observable from repeated

low-to-high or high-to-low transitions. This observed phase difference can correspond to an

infinite number of possible real phase differences, all separated by 2π. Figure 2-6 illustrates

these phase ambiguities.

One way to solve this problem is to observe from Equation 2.5 that as long as δd <

λ/2, φ = ∆, and there is no ambiguity. Since d1, d2, and L are three sides of a triangle,

L ≥ |d1 − d2| = |δd|, and I can therefore place the receivers at a distance L < λ/2 to

unambiguously determine φ and therefore uniquely estimate (d1 − d2). However, for a 40

kHz ultrasonic waveform at a temperature of 25◦C and 50% humidity, λ/2 = 4.35 mm.

30

R1

R2

B1

B2

θ

θ
X

X

Y

Y

Figure 2-7: θ is ambiguous; there are two beacon positions B1, B2 that result in the same
θ at the compass.

This is smaller than the size of most available ultrasound receivers, which are typically on

the order of about 1 cm.

Priyantha et al. suggest a method of placing three receivers along a line with separation

distances chosen to be relatively prime integral multiples of λ/2. Because the observed phase

differences between receivers is not independent, one can disambiguate the observations to

find the actual phase difference φ. This approach, however, requires the addition of the

third receiver. In Chapter Three, I will propose an alternative method that preserves the

minimal requirement of two receivers for determining φ.

2.3.3 Disambiguating θ

Using Equation 2.4 and the techniques discussed thus far, I can determine sin θ between

the compass and a particular beacon B. But as Figure 2-7 shows, in general, there are two

positions B1, B2 for a beacon B that result in the same θ at the compass. This is due to

symmetry of the system about the line X–X. An analytical way of understanding this is

to observe that there are two values of θ in the range [0, 2π) for a given value of sin θ. This

ambiguity in the position of the beacon prevents me from determining a unique value for

the heading.

Priyantha et al. solve this by using two sets of non-collinear receiver-triplets to break

31

Figure 2-8: Two ultrasound receivers mounted on a precision rotating platform.

the symmetry. The two sets of receiver-triplets are perpendicularly configured using five

receivers. In Chapter Three, I propose methods that allow the use of a single receiver to

break the symmetry, thereby reducing the number of receivers required to three.

2.3.4 Implementation Experience

Priyantha et al. demonstrated a prototype compass device providing 2D planar orientation

to within five degrees of accuracy with respect to a beacon. As a step towards realizing

the Cricket Compass, I set out to improve the accuracy of planar orientation estimation

using two ultrasound receivers, without dealing with the phase ambiguity or θ ambiguity

problems. That is, while precisely controlling all variables, I sought to understand the

limitations on obtaining highly accurate raw differential distances.

Setup

In this series of experiments, I used two beacons, two ultrasound receivers, two amplification

circuits, an oscilloscope, and two pieces of precision optics mounting equipment. The optical

mounting equipment consists of a heavy board and a rotating platform; the board provides

a stable foundation, and the rotating platform allows precise measurements of rotation in

the horizontal plane and controls for calibration. I also used a plumb line and spirit level

to aid in calibration.

Figure 2-8 shows the rotating platform with the two ultrasound receivers mounted using

a thin layer of double-sided sticky foam. The two receivers are placed as close to each other

32

as possible without touching so as to minimize the separation distance. The midpoint

between the two receivers lies on the axis of rotation. The ultrasound receivers themselves

only produce signals with millivolt amplitudes in response to the beacon pulses, so I need

to amplify the raw signal. To provide the necessary amplification, I rebuilt two copies of

the dual-stage amplification circuits that are used on Cricket listeners.

Procedure

In different trials, I explored the effect of different ultrasound receivers and waveform mea-

surement methods on the accuracy of differential distance measurements. In these experi-

ments I wanted to carefully control all the other variables so that I could collect accurate

data representing the rotation in the horizontal plane. In each trial, I started with this

calibration procedure:

1. Select a good open space to test such that multipath signals do not contribute to

measurements.

2. Place a beacon directly above the rotary table. Use a plumb line hanging down from

the beacon’s ultrasound transmitter to locate the midpoint of the ultrasound receivers

directly below.

3. Using a spirit level, level the rotating platform along two orthogonal axes to ensure

that the rotation occurs purely in the horizontal plane.

4. Turn the beacon on, and level the two receivers such that when rotated, the two

received waveforms are exactly in-phase.

After this calibration procedure, the receivers were completely level and rotated only in

the horizontal plane. I then set up a beacon about three feet above the sensors and about

four feet away horizontally. I turned on the beacon and rotated the receivers until both

signals were in-phase. This was the baseline 0◦ heading. I then rotated the receivers in 5◦

increments from −90◦ to +90◦, recording three phase measurements from three separate

pulses at each increment. Rotating in this way implicitly avoids the θ ambiguity. In addition,

I disambiguated the phase measurements by using apriori knowledge of the heading.

I carried out several trials of this rotation experiment using three different ultrasound

receivers manufactured by Panasonic, Murata and Kobetone. The Kobetone receivers are

33

Murata

Panasonic

Kobetone

Figure 2-9: A plot of error in calculated orientation while taking measurements using three
different ultrasound receiver types. The Murata sensors provide the most accurate results.

the standard ones used on Crickets. For each set of rotation and phase data, I measured

the beacon height and distance and used Equation 2.4 to convert the phase measurements

into estimated orientation. I plot the best set of data for each of the three sensors against

each other in Figure 2-9.

In the rotation experiments, I measured phase differences by looking at repeated low-

high zero-crossing points. However, within any pulse there can be well over twenty periods.

I made most measurements in the highest amplitude parts of the pulse, but this method is

still somewhat arbitrary. Therefore, after carrying out the rotation experiments, I went back

to analyze the captured ultrasound waveforms to check for consistency in phase difference

throughout the pulse duration.

Results

There were three main conclusions from this preliminary experience:

Choice of Ultrasound Receiver: The best sets of data in Figure 2-9 are representative

of the general receiver performance. The Murata sensors produced the best results.

The Murata sensors were of higher manufacture quality and were also physically the

34

smallest.

Accurate Range: Regardless of which ultrasound receiver I used, the experimental results

are always most accurate from −45◦ to +45◦. Intuitively, as I rotate the receivers past

45◦, the differential distance between the receivers with respect to the beacon changes

much less than when rotating at smaller angles. Based on Equation 2.4, we can

analytically look at the arcsine function and observe that for −45◦ ≤ arcsin(x) ≤ 45◦

the function is quite linear, but that outside this range, the slope begins to increase.

My precision in phase measurement is bounded, corresponding to a bounded precision

on x. For a bounded error in x, the error in | arcsin(x)| > 45◦ is greater than error in

| arcsin(x)| < 45◦.

Measurement Method: Measuring phase by looking at repeated zero-crossings intro-

duces error because the consistency of zero-crossings between two pulses vary from

noise and analog-to-digital conversion quantization error. I address this issue in Chap-

ter Three by proposing an accurate measurement method that captures more than

just the information contained in one period of the waveforms.

35

36

Chapter 3

Theory of Operation

In this chapter, I propose an end-to-end solution to determine three-dimensional orientation.

I build upon the Cricket indoor location system and the initial compass work described in

Chapter Two to propose a set of methods enabling the Compass orientation capability

described in Section 1.2. I first describe the specific capabilities provided by the Cricket

infrastructure. Then, I break down the orientation problem into two parts: (i) determining

orientation to beacons in the Compass local coordinates and (ii) using multiple estimates

of orientation to beacons to determine the unique Compass orientation consistent with the

deployed Cricket infrastructure. While proposing methods to solve these problems, I also

propose a solution to the lower-level differential distance problem.

3.1 Cricket Infrastructure

The current revision of the Cricket system requires the placement of four active beacons to

enable delivery of location information. A listener deployed in this infrastructure specifically

provides the capability to localize the (x, y, z) coordinates of itself and all the beacons and

to associate each received ultrasound pulse with the particular beacon sending that pulse.

Recall that in this version of the Cricket system, distance measurements are only accurate

to within several centimeters.

37

y

R1

R2B

O
L/2

L/2

d

d1

d2

θ

(a) (b)

y

x

z

B

O
R1

R2
θ1

θ
θ1

Figure 3-1: Determining the angle θ between the vector to the beacon and the axis formed
by the receiver pair using distance estimates. (a) shows a 3D view and (b) shows the 2D
view of the plane formed by R1, R2 and B.

3.2 Three-Dimensional Local Orientation

Figure 3-1a shows a beacon B and two ultrasonic receivers, R1 and R2, which are separated

by a distance L. First, let me define a coordinate system where the origin O is the mid-point

of the segment from R1 to R2. Let the vector from the origin to the beacon be −−→OB. For

convenience, let us define the y-axis to run through R1 and R2. The basic building block

of solving the three-dimensional orientation problem is the ability to determine the angle θ

between the two vectors −−→OB and ŷ.

From Figure 3-1b:

d2
1 =

(
L

2
cos θ1

)2

+
(

d̄− L

2
sin θ1

)2

d2
2 =

(
L

2
cos θ1

)2

+
(

d̄ +
L

2
sin θ1

)2

⇒ d2
2 − d2

1 = 2d̄L sin θ1 (3.1)

where d̄ ≈ d1+d2
2 when d1, d2 � L.

38

vb

B

θb

z

Bθa

(a) (b)

va

va

vb
θa

θb

Figure 3-2: A sphere bounds the possible beacon positions based on a distance estimate.
−→va and −→vb represent axes through receiver pairs. The “opening angles” θa and θb relative
to the axes determine two cones that intersect with the sphere to form two circles. The
intersection of these circles are the two possible beacon positions. (a) shows a 3D view and
(b) shows the view from above.

Equation 3.1 reduces as follows:

sin θ1 =
(

d2 − d1

L

)(
d2 + d1

2d̄

)
⇒ sin θ1 =

d2 − d1

L

From Figure 3-1b I can then relate θ1 and θ because θ = π/2− θ1:

θ =
π

2
− arcsin

(
d2 − d1

L

)
(3.2)

Equation 3.2 now allows me to determine the angle θ between the two vectors −−→OB and

ŷ by measuring the differential distance (d2 − d1) between the two ultrasound receivers.

Recall that ŷ is really just the vector that runs through the two receivers. Therefore, I can

find θ between the vector to a beacon and any vector running through a pair of receivers.

Given a pair of receivers and θ, I know that the position of the beacon must be on the

surface of a cone. The cone shape arises because the vector through the receivers is an axis

of symmetry and rotation about that axis produces the cone. The point of this cone is the

midpoint of the two receivers, and the “opening angle” of this cone is θ.

Now, if I use a distance estimate provided by a Cricket listener, this further limits the

39

position of the beacon to one circle on that cone. In order to further constrain the position

of the beacon, I introduce another pair of receivers. Using Equation 3.2 and a beacon

distance estimate, I can again use this pair of receivers to locate the beacon position on a

circle. As long as this pair of receivers is not collinear, the two receiver pairs will allow us

to localize the beacon position to two points, the intersection of the two circles. These two

circles lie on the surface of the sphere that has its center at the receivers and a radius equal

to the beacon distance estimate.

Figure 3-2 illustrates the idea of using two receiver pairs. Observe that the beacon

position is ambiguous because it can be located either above or below the plane formed by

the receivers. Also note that the two receiver pairs in the figure are formed by only three

receivers. If I use four receivers, I then have more than two pairs of receivers. And, if the

fourth receiver is not coplanar with the other three, I can then unambiguously locate the

beacon at a single point.

xy plane

(x, y)

z

Figure 3-3: Determining the position of a beacon using an array of receivers.

dinates of the beacon as shown in Figure 3-3. Let −→va be a vector starting from R2

and passing through R1. Let −→vb be the vector starting from R2 and passing through
R3. Let −→va and −→vb together define the xy plane containing the three receivers. Let !B
be the vector from R2 to the beacon. When | !B| # the separation distance between
the receivers, we can calculate as follows:

1. Calculate θa and θb using Equation 3.2. θa is the angle between −→va and !B. θb is
the angle between −→vb and !B:

θa = π
2 − arcsin

(
d2−d1

L

)
a

θb = π
2 − arcsin

(
d2−d1

L

)
b

2. Project !B onto −→va and project !B onto −→vb :

proj−→va
!B = | !B| cos(θa)

−→va
|−→va | proj−→vb

!B = | !B| cos(θb)
−→vb

|−→vb |

Note that steps 1 and 2 of the beacon position calculation can be combined to
eliminate any trigonometric functions. Taking the receivers associated with −→va

as an example, we have:

Combining the two equations:

proj−→va
!B = | !B| cos

(
π

2
− arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B| sin
(

arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B|
(

d2 − d1

L

)
a

(−→va

|−→va |
)

(3.3)

3. Define the line la such that la ⊥ proj−→va
!B and passes through the endpoint of

proj−→va
!B. Similarly define the line lb such that lb ⊥ proj−→vb

!B and passes through

30

Figure 3-3: Determining the position of a beacon using an array of receivers.

dinates of the beacon as shown in Figure 3-3. Let −→va be a vector starting from R2

and passing through R1. Let −→vb be the vector starting from R2 and passing through
R3. Let −→va and −→vb together define the xy plane containing the three receivers. Let !B
be the vector from R2 to the beacon. When | !B| # the separation distance between
the receivers, we can calculate as follows:

1. Calculate θa and θb using Equation 3.2. θa is the angle between −→va and !B. θb is
the angle between −→vb and !B:

θa = π
2 − arcsin

(
d2−d1

L

)
a

θb = π
2 − arcsin

(
d2−d1

L

)
b

2. Project !B onto −→va and project !B onto −→vb :

proj−→va
!B = | !B| cos(θa)

−→va
|−→va | proj−→vb

!B = | !B| cos(θb)
−→vb

|−→vb |

Note that steps 1 and 2 of the beacon position calculation can be combined to
eliminate any trigonometric functions. Taking the receivers associated with −→va

as an example, we have:

Combining the two equations:

proj−→va
!B = | !B| cos

(
π

2
− arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B| sin
(

arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B|
(

d2 − d1

L

)
a

(−→va

|−→va |
)

(3.3)

3. Define the line la such that la ⊥ proj−→va
!B and passes through the endpoint of

proj−→va
!B. Similarly define the line lb such that lb ⊥ proj−→vb

!B and passes through

30

Figure 3-3: Determining the position of a beacon using an array of receivers.

dinates of the beacon as shown in Figure 3-3. Let −→va be a vector starting from R2

and passing through R1. Let −→vb be the vector starting from R2 and passing through
R3. Let −→va and −→vb together define the xy plane containing the three receivers. Let !B
be the vector from R2 to the beacon. When | !B| # the separation distance between
the receivers, we can calculate as follows:

1. Calculate θa and θb using Equation 3.2. θa is the angle between −→va and !B. θb is
the angle between −→vb and !B:

θa = π
2 − arcsin

(
d2−d1

L

)
a

θb = π
2 − arcsin

(
d2−d1

L

)
b

2. Project !B onto −→va and project !B onto −→vb :

proj−→va
!B = | !B| cos(θa)

−→va
|−→va | proj−→vb

!B = | !B| cos(θb)
−→vb

|−→vb |

Note that steps 1 and 2 of the beacon position calculation can be combined to
eliminate any trigonometric functions. Taking the receivers associated with −→va

as an example, we have:

Combining the two equations:

proj−→va
!B = | !B| cos

(
π

2
− arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B| sin
(

arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B|
(

d2 − d1

L

)
a

(−→va

|−→va |
)

(3.3)

3. Define the line la such that la ⊥ proj−→va
!B and passes through the endpoint of

proj−→va
!B. Similarly define the line lb such that lb ⊥ proj−→vb

!B and passes through

30

Figure 3-3: Determining the position of a beacon using an array of receivers.

dinates of the beacon as shown in Figure 3-3. Let −→va be a vector starting from R2

and passing through R1. Let −→vb be the vector starting from R2 and passing through
R3. Let −→va and −→vb together define the xy plane containing the three receivers. Let !B
be the vector from R2 to the beacon. When | !B| # the separation distance between
the receivers, we can calculate as follows:

1. Calculate θa and θb using Equation 3.2. θa is the angle between −→va and !B. θb is
the angle between −→vb and !B:

θa = π
2 − arcsin

(
d2−d1

L

)
a

θb = π
2 − arcsin

(
d2−d1

L

)
b

2. Project !B onto −→va and project !B onto −→vb :

proj−→va
!B = | !B| cos(θa)

−→va
|−→va | proj−→vb

!B = | !B| cos(θb)
−→vb

|−→vb |

Note that steps 1 and 2 of the beacon position calculation can be combined to
eliminate any trigonometric functions. Taking the receivers associated with −→va

as an example, we have:

Combining the two equations:

proj−→va
!B = | !B| cos

(
π

2
− arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B| sin
(

arcsin

(
d2 − d1

L

)
a

) (−→va

|−→va |
)

= | !B|
(

d2 − d1

L

)
a

(−→va

|−→va |
)

(3.3)

3. Define the line la such that la ⊥ proj−→va
!B and passes through the endpoint of

proj−→va
!B. Similarly define the line lb such that lb ⊥ proj−→vb

!B and passes through

30

-z

(x, y, z)

(x, y, -z)

va

vb

B

R1R2

R3

la

lb

Figure 3-3: Determining the position of a beacon using an array of receivers. Vector methods
pinpoint (x, y) coordinates. A ±z ambiguity arises because the receivers are coplanar.

Returning back to the case of three receivers, I can calculate the (x, y, z) coordinates

of the beacon as shown in Figure 3-3. Let −→va be a vector starting from R2 and passing

through R1. Let −→vb be the vector starting from R2 and passing through R3. Let −→va and −→vb

together define the xy plane containing the three receivers. Let ~B be the vector from R2 to

40

the beacon. When ‖ ~B‖ � the separation distance between the receivers, we can calculate

as follows:

1. Calculate θa and θb using Equation 3.2. θa is the angle between −→va and ~B. θb is the

angle between −→vb and ~B:

θa =
π

2
− arcsin

(
d2 − d1

L

)
a

θb =
π

2
− arcsin

(
d2 − d1

L

)
b

2. Project ~B onto −→va, and project ~B onto −→vb :

proj−→va
~B = ‖ ~B‖ cos(θa)

−→va

‖−→va‖
proj−→vb

~B = ‖ ~B‖ cos(θb)
−→vb

‖−→vb‖

3. Define the line la such that la ⊥ proj−→va
~B and passes through the endpoint of proj−→va

~B.

Similarly define the line lb such that lb ⊥ proj−→vb
~B and passes through the endpoint

of proj−→vb
~B. The intersection of la and lb determine the x and y coordinates of the

beacon position.

4. Calculate the two possible beacon z coordinates:

z = ±
√
‖ ~B‖2 − x2 − y2 (3.3)

I now have the (x, y,±z) coordinates of a beacon in the local coordinate space defined

by the receivers. The position of receiver R2 determines the exact origin of this coordinate

space. The coordinates I assign to R1 and R3 implicitly define the axes of this space because

they determine the vectors −→va and −→vb .

Note that I can combine steps 1 and 2 of the above beacon position calculation to elim-

inate any trigonometric functions. Taking the receivers associated with −→va as an example,

I have:

θa =
π

2
− arcsin

(
d2 − d1

L

)
a

and proj−→va
~B = ‖ ~B‖ cos(θa)

−→va

‖−→va‖

Combining the two equations:

proj−→va
~B = ‖ ~B‖ cos

(
π

2
− arcsin

(
d2 − d1

L

)
a

)(−→va

‖−→va‖

)

41

= ‖ ~B‖ sin
(

arcsin
(

d2 − d1

L

)
a

)(−→va

‖−→va‖

)
= ‖ ~B‖

(
d2 − d1

L

)
a

(−→va

‖−→va‖

)
(3.4)

3.3 Obtaining Accurate Differential Distances

In Section 2.3.2 I discussed the problem of obtaining accurate differential distances. This

problem applies to the beacon position calculation in the Section 3.2 because I want to

precisely measure (d2 − d1), which appears in Equation 3.4.

As discussed in Section 2.3.2, I can measure (d2−d1) by looking at the phase differential

between two received ultrasound waveforms. As shown in figure 2-6 there is a phase ambi-

guity problem when looking at phase differentials. Instead of looking at repeated low-high

or high-low crossings, however, I can measure the differential distance by looking at the

normalized cross-correlation between the waveforms received at R1 and R2 for a varying

delay k. I express this as:

n[k] =

∑
i

s1[i]s2[i + k]√
(
∑
i

s2
1[i])(

∑
i

s2
2[i + k])

(3.5)

s1[i] and s2[i] are sample values of the ultrasound waveforms received on R1 and R2

respectively. n[k] reaches a maximum when s2 is precisely kmax samples ahead of s1, so I

can use kmax as an accurate estimate of the phase differential between the two waveforms.

Using the waveform sample rate and the speed of sound, I can convert kmax into (d2 − d1):

(d2 − d1) =
(

speed of sound
sample rate

)
kmax

=
(

speed of sound
sample rate

)
(arg max

k
n[k]) (3.6)

3.4 Registration to Global Orientation

In Section 3.2, I proposed how to determine the Compass orientation with respect to a

beacon. This orientation, however, is based on a set of coordinate axes defined by the array

of receivers on the Compass. In order to integrate the Compass orientation into the Cricket

system, what I require is the end-to-end orientation of the Compass in the Cricket coordinate

42

system defined by the network of beacons. In particular, I wish to find the 3-DOF rotation

that optimally registers the Compass coordinate space with Cricket coordinate space. This

registration yields the absolute orientation of the Compass in the globally consistent Cricket

coordinate space.

From the existing Cricket infrastructure, I can determine the (x, y, z) positions of the

Compass and beacons in Cricket coordinates. Using the methods proposed in Section 3.2,

I can also determine the positions of the beacons in a coordinate space where the Compass

defines the origin and coordinate axes. I wish to find the relationship between the two

coordinate systems using corresponding position estimates of the beacons and the Compass

in the two coordinate systems. Berthold Horn has presented an elegant closed-form least-

squares solution to this problem using unit quaternions [5].

If I take the case where I have two beacons and one Compass, I then have three points in

the Compass and Cricket coordinate systems. Horn’s general solution for 6-DOF absolute

orientation simplifies greatly when both sets of measurements are exactly coplanar, as always

happens when there are only three measurements. Horn breaks the 3-DOF rotation problem

into two parts: (i) rotating the planes formed by each set of measurements into coincidence

and then (ii) rotating about the normal of the plane so as to minimize the sum of squares

of distances between corresponding measurements. The overall rotation is the combination

of these two rotations.

Horn’s method also includes the further steps for finding the optimal 3-DOF translation,

but for the Compass I am only interested in pure 3-DOF rotation. Here I will apply Horn’s

method to a set of positions in Cricket space and a set of positions in Compass space. Each

set includes the (x, y, z) position of two beacons B1 and B2 and the Compass C.

3.4.1 Centroid Relative Coordinates

Let the positions in the compass and cricket coordinate systems be:

{rcompass,i} and {rcricket,i}

where i = {B1, B2, C} and r is the (x, y, z) vector measurement of a beacon or the Compass.

Start by referring all measurements to the centroids defined by:

43

r̄compass =
1
3

∑
i

rcompass,i and r̄cricket =
1
3

∑
i

rcricket,i

Denote the new centroid-relative measurements by:

r′compass,i = rcompass,i − r̄compass and r′cricket,i = rcricket,i − r̄cricket

3.4.2 Rotation of the Planes

There are two beacon positions B1 and B2 and the Compass position C forming a plane in

each coordinate system. Start by finding the normals to the two planes using cross products:

ncompass = r′compass,B2 × r′compass,B1 , ncricket = r′cricket,B2 × r′cricket,B1

Also find the unit normals:

n̂compass =
ncompass

‖ncompass‖
, n̂cricket =

ncricket

‖ncricket‖

The line of intersection of the two planes lies in both planes, so it is perpendicular to both

normals and therefore, parallel to the cross product of the two normals:

a = ncompass × ncricket, â =
a
‖a‖

The angle φ between the normals is the angle I must rotate:

cos φ = n̂compass · n̂cricket, sinφ = ‖n̂compass × n̂cricket‖

To rotate the Compass measurements into the plane containing the Cricket measurements,

use Rodrigues’ formula [4], the unit quaternion:

qa =
(

cos
φ

2
, â sin

φ

2

)

Let r′′compass,i be the rotated version of r′compass,i by:

44

R′′
compass,i = qa ∗R′

compass,i ∗ q−1
a

where ∗ denotes quaternion multiplication and R is the quaternion representation of a point

r given by R = (0, r).

3.4.3 Rotation in the Plane

Now find the rotation in the plane of the Cricket measurements that minimizes the sum

of squares of distances between corresponding measurements. Let αi be the angle between

corresponding measurements. Let r′cricket,i = ‖r′cricket,i‖ and r′′compass,i = ‖r′′compass,i‖ =

‖r′compass,i‖. Figure 3-4 illustrates how to apply the cosine rule for triangles to find the

square of the distance between corresponding measurements:

d2
i =

(
r′cricket,i

)2
+
(
r′′compass,i

)2
− 2

(
r′cricket,i

) (
r′′compass,i

)
cos αi

r″compass, C

r′cricket, C

αC

αB2

αB1

dB1

dB2

dC

Figure 3-4: The second rotation in the plane minimizes the sum of squares of distances
between corresponding points.

When I rotate the Compass measurements in the plane through an angle θ, the angles αi

are reduced by θ. So, to minimize the sum of squares of distances I need to maximize:

∑
i

(
r′cricket,i

) (
r′′compass,i

)
cos (αi − θ)

45

Because cos(α + β) = cos α cos β − sinα sinβ, I can equivalently maximize:

C cos θ + S sin θ,

where

C =
∑

i

(
r′cricket,i

) (
r′′compass,i

)
cos αi =

∑
i

(
r′cricket,i · r′′compass,i

)

S =
∑

i

(
r′cricket,i

) (
r′′compass,i

)
sinαi =

(∑
i

r′cricket,i × r′′compass,i

)
· n̂cricket

This expression has extrema where C sin θ = S cos θ. Using the identity sin2 θ + cos2 θ = 1,

I have:

sin θ = ± S√
S2 + C2

, cos θ = ± C√
S2 + C2

The extreme values of the expression are ±
√

S2 + C2. For a maximum, choose the values:

sin θ = +
S√

S2 + C2
, cos θ = +

C√
S2 + C2

Note that S and C can be negative. The second rotation is about the axis n̂cricket by an

angle θ. Using Rodrigues’ formula again, I can represent this by the unit quaternion:

qp =
(

cos
θ

2
, n̂cricket sin

θ

2

)

Now, the overall rotation is the composition of the two rotations: q = qp ∗ qa, which is the

quaternion representing the rotation of the Cricket Compass into the globally consistent

Cricket coordinate space. The inverse of q is the end-to-end orientation of the Compass in

the Cricket coordinate space.

Note that I can avoid using any trigonometric functions by using the half-angle formulas:

cos
θ

2
=

√
1 + cos θ

2
, sin

θ

2
=

sin θ√
2(1 + cos θ)

for −π ≤ θ ≤ π.

46

Chapter 4

The Cricket Compass Prototype

In the previous chapter, I proposed methods to determine the end-to-end orientation of

the Cricket Compass operating within the Cricket location infrastructure. In this chapter

I implement a prototype of the Cricket Compass; the design of this implementation is

summarized in figure 4-1. I discuss several practical challenges that arise when designing

and implementing the Cricket Compass. I characterize the performance of this prototype

at each layer of implementation and in end-to-end performance.

waveform analog-
to-digital

conversion

sensor array,
gain

cross correlation,
delay

measurement

Compass Hardware

translation into
Cricket beacon

coordinate space

ultrasound
pulses

local 3-DOF
orientation

waveform
data

Cricket Beacons

waveform
samples

orientation vector
calculation

Compass Software

differential
distances

Figure 4-1: A block diagram of the Cricket Compass implementation. Ultrasound receive,
amplification and digitization are accomplished in hardware while the orientation algorithms
are implemented in software.

47

4.1 Hardware Design Parameters

The Cricket Compass hardware handles low-level reception, amplification and digitization

of ultrasound pulses. The overall performance and capabilities of the Compass depend on

several parameters including the choice of sensors, sensor array geometry, and waveform

sampling rate. I accumulated experience through work described in Section 2.3.4, and I

complement this experience with additional analysis here to guide my implementation and

design choices.

4.1.1 Sensor Array

I start at the hardware level by building the sensor array and amplification circuity to

produce the analog ultrasound waveforms. In Section 2.3.4, I performed preliminary exper-

iments with three types of ultrasound sensors and a two-stage amplification circuit similar

to the one in the current revision of Cricket hardware.

For the Cricket Compass implementation, I use the Murata ultrasound sensors, which

performed the best in previous experiments. I also use the same well-tested and proven

amplification circuit; for the circuit design refer to Appendix A. The response of the ultra-

sound sensors to Cricket ultrasound pulses is only a few millivolts, so this is an extremely

high gain circuit that is prone to oscillation. Because I build multiple channels of this high

gain circuit operating from the same supply and ground, I exercise extreme care to minimize

noise to a level not exceeding 200mV peak-to-peak on the output. This is on par with the

performance of current Cricket hardware.

Sensor Array Geometry

Having chosen a sensor and gain circuit, the first design parameter for the sensor array is

how many sensors to use. The orientation method proposed in Section 3.2 requires at least

two sensor pairs, or three non-collinear receivers. In addition, a practical issue is that a

receiver pair is only accurate to within angles of |θ| < 45◦ as discussed in Section 2.3.4.

I require that the Compass have the capability of accurately determining orientation in

all directions. Therefore, the choice of sensor array geometry is loosely coupled with the

choice of number of sensors. That is, for a given sensor array geometry, for each possible

Compass orientation there must be at least two sensor pairs capable of generating accurate

48

Figure 4-2: A few possible ultrasound sensor array geometries. The dotted lines denote
sensor pairs.

measurements.

Before I discuss specific sensor array geometries, I wish to briefly mention that the

methods proposed in Section 3.2 allow for the use of sensors in arbitrary configurations.

Although this makes it possible to implement three-dimensional sensor arrays, I restrict my

design choice to planar configurations of sensors. All the ultrasound sensors I experimented

with are directional in nature, and all have a top and bottom. The ultrasound sensors

detect almost no signal from sources that are located below the sensor; this makes the

implementation of an omnidirectional three-dimensional array quite difficult.

In this Compass implementation, I adhere to the usual notion of beacons mounted on

ceilings with listening devices generally facing up while in use. Therefore, for simplicity I

restrict the space of possible array geometries to planar configurations. Given that the sensor

array is planar and should be omnidirectional, the possible array geometries should look

symmetric. For example, some combination of equilateral triangles, squares, and crosses

could be possible candidates. Figure 4-2 illustrates a few possible geometries.

In selecting a configuration to implement, there are a few guiding principles. First, as

discussed before, there must be at least two sensor pairs capable of generating measurements

in order to calculate a beacon position. Remember also that a given sensor pair is only

accurate for opening angles up to 45◦. Finally, most oscilloscopes and multi-channel analog-

to-digital converters offer only four signal channels.

Figure 4-3 shows four configurations of four sensors or less and illustrates the accurate

sensor “coverage” of each configuration. (a) illustrates that one sensor pair oriented on the

0◦ axis alone provides accurate coverage for the range [45◦, 135◦] and [225◦, 315◦]. (b) shows

that with three sensors, there are ranges without accurate coverage by two pairs. (c) is a

square configuration of four sensors. Although there are six pairs of sensors, two of the pairs

49

0°180°

45°

90°

135°

225°

270°

315°

(a) (b)

(c) (d)

1 sensor pair coverage 2 sensor pair coverage 3 sensor pair coverage

Figure 4-3: A comparison of sensor pair coverage for different geometries.

are not unique in their orientation and do not provide more information. This geometry

exhibits accurate coverage by two sensor pairs in every direction. (d) represents the four

sensor equilateral triangle. I select this geometry because it exhibits accurate coverage by

three sensor pairs in every direction. In each of the eight 30◦ sectors, I can use three of the

six total sensor pairs to calculate position.

50

Figure 4-4: A photo of the actual compass hardware prototype. The four ultrasound sensors
are configured in the equilateral triangle configuration. Oscilloscope probes connect to the
output of four channels of high-gain battery-powered amplifiers. A sheet of metal provides
a good ground plane.

Separation Distance

Having chosen a sensor array geometry, I can choose how far apart to set the sensors. For

several reasons, I choose to place the sensors as close to each other as possible without

touching. First, from experience a smaller separation distance increases accuracy. Second,

a small separation physically constrains the search space for the cross correlation delay

measurement; the waveforms cannot have a differential distance greater than the physical

distance between receivers. Finally, a minimal separation distance creates a physically small

sensor package.

4.1.2 Analog-to-Digital Conversion

I digitize the ultrasound waveforms in order to process them in software. The analog-

to-digital conversion resolution and sample rate can both affect the differential distance

measurement performed by the normalized cross correlation. The conversion sample rate

limits the precision of the measurement because the units of the inter-waveform time delay

are a discrete number of samples. The conversion resolution, however, has not shown any

effect on the measurement. Most analog-to-digital converters provide at least eight bits of

resolution, which is sufficient for the Compass application.

51

For the Cricket Compass, I use the conversion capabilities of a Tektronix TDS2024

digitizing oscilloscope. This oscilloscope provides serial connectivity to a PC, four channels

of input, and sample rates as high as 2 gigasamples per second at eight-bit resolution. The

oscilloscope is limited to 2500 samples per captured waveform.

4.2 Software Design Parameters

I program the cross correlation, relative beacon position calculation, and coordinate trans-

lation methods described in Chapter Three, implementing these methods in several hundred

lines of MATLAB code. I also automate the acquisition of waveform data from the oscillo-

scope through the MATLAB serial programming interface. These implementations provide

functions to acquire the ultrasound waveform data in the MATLAB environment, measure

the inter-sensor differential distances, generate relative beacon position estimates, and to

visualize the calculation methods.

After measuring the six inter-sensor differential distances, but before estimating a beacon

position, I must choose the three differential distances that can support accurate calcula-

tions. Figure 4-3d shows twelve 30◦ sectors; in each sector, three sensor pairs are accurate.

I bootstrap from the six differential distances by looking at the sign of the differential dis-

tances. By taking the sign of a distance corresponding to a sensor pair, I know which sensor

of that pair received the ultrasound pulse first. I can use this information to localize a

beacon to a 180◦ sector. By doing this for each of the six pairs, I can then localize a beacon

to a single 30◦ sector and decide which pairs to use for calculation.

When generating beacon position estimates, I always take the (x, y, +z) coordinate

because the ultrasound array cannot receive ultrasound from below the xy plane and because

in general, beacons will be positioned above on walls or the ceiling. After the compass

functions have been applied to estimate the position of two beacons, I then apply the

translation method to determine absolute orientation.

4.3 Testing and Modifications

The primary challenge for the Compass is obtaining accurate and precise inter-sensor differ-

ential distance measurements. The accuracy of the higher-level calculations depends heavily

on these measurements. In preliminary testing of the hardware and software, a number of

52

0.5 1 1.5 2 2.5

x 10
−4

−1.5

−1

−0.5

0

0.5

1

1.5
Plot of ultrasound waveforms

time (seconds)

am
pl

itu
de

 (
vo

lts
)

Figure 4-5: A plot of four ultrasound waveforms coming from the Compass hardware.
Observe that even though the sensors are physically close together, the envelope of the
ultrasound can vary greatly.

issues arise that make this difficult. First I will discuss the details of the correlation method

and its typical performance. Then I will discuss modifications to improve this performance

and to handle inaccurate measurements.

4.3.1 Correlation

The normalized cross correlation method for measuring differential distance works as de-

scribed in Section 3.3. To visualize the principle behind this method, you can imagine

taking two waveforms and sliding them relatively in time until the two look the most alike.

The amount you have to slide to achieve this is the precise time delay. In my implementa-

tion, each waveform consists of 2500 eight-bit voltage samples. As I shift the waveforms,

my implementation zeros the values that fall outside the window where the two waveforms

overlap.

As shown in Figure 4-6, the correlation between two ultrasound waves has a frequency

of 40 kHz. The peaks of the correlation are candidates for the actual phase difference

between two waveforms. This method allows the precise measurement of the phase differ-

ence. This measurement, however, is not necessarily accurate. The peaks of the correlation

are sometimes very close in magnitude and the wrong peak can easily be selected as the

53

−50 −25 0 25 50
−1

−0.5

0

0.5

1
sensor pair 1−2

no
rm

al
iz

ed
 c

ro
ss

 c
or

re
la

tio
n

−25 0 25
−1

−0.5

0

0.5

1
sensor pair 1−3

wave2 time shift (µs)
−50 −25 0 25 50

−1

−0.5

0

0.5

1
sensor pair 1−4

−25 0 25
−1

−0.5

0

0.5

1
sensor pair 2−3

no
rm

al
iz

ed
 c

ro
ss

 c
or

re
la

tio
n

−50 −25 0 25 50
−1

−0.5

0

0.5

1
sensor pair 2−4

wave2 time shift (µs)
−25 0 25

−1

−0.5

0

0.5

1
sensor pair 3−4

Figure 4-6: A plot of six inter-sensor normalized cross correlations for varying time delays.
The input waveforms are those shown in Figure 4-5. Each correlation has a 40 kHz frequency
as the two waveforms move in and out of phase. The marker indicates the peak of maximum
correlation.

measurement.

In order to verify the precision of this method I carried out an experiment, duplicating

the experiment in Section 2.3.4. Instead of using repeated zero-crossings to measure differ-

ential distance, however, I used the correlation method applied to the single rotating sensor

pair. Figure 4-7 compares the performance of the two methods. The correlation method

performs as well as the best set of data from the zero-crossing method and approaches the

limit on precision imposed by the quantization error in the digitized waveforms.

In order to quantify the accuracy of the correlation method, I started testing the Com-

pass prototype by again setting up an experiment similar to the one described in Sec-

tion 2.3.4. I mounted the compass on the precision rotating platform and collected mea-

surements for two 360◦ rotations at 10◦ increments. The measurements at each 10◦ incre-

ment include the four ultrasound waveforms generated by the sensor array in response to

an ultrasound pulse sent by a beacon of known position. From these four waveforms, the

correlation method measures the time delays on the six sensor pairs.

The experimental data includes over 400 measurements of time delays on sensor pairs.

54

0

1

2

0 15 30 45

actual orientation (degrees)

ca
lcu

la
te

d
or

ie
nt

at
io

n
er

ro
r (

de
gr

ee
s)

Zero-crossing method

Correlation method

Figure 4-7: A plot of error in calculated orientation using two different methods for the
differential distance measurement.

I compared these experimental measurements against the expected values I calculated in

simulation, and found an overall error rate of 18.5%. The errors occur when the correlation

method selects a peak that is either one period before or after the correct peak. From

analysis of the data, the distribution of these errors looks random. That is, the errors are

not clustered in any discernible way.

At any single orientation, I generate six measurements from one ultrasound pulse. For all

six measurements to be correct at that orientation, each of the measurements corresponding

to the six sensor pairs must be correct. These sets of six measurements were correct 33%

of the time in the experimental data.

4.3.2 Filtering

I wish to improve the accuracy of the correlation measurement. At the lowest level, there

is always noise on the amplified waveforms, and as discussed in Section 2.3.1 the envelope

of the ultrasound waveforms is highly variable and unpredictable. For this reason, I briefly

explored the use of filters to improve the quality of the waveform data.

Ideally, the filter should pass only the 40 kHz ultrasound waveforms. In hardware, I

built several sharp band-pass filters centered around 40 kHz. However, I abandoned this

approach very quickly because it is difficult to build hardware filters that are precisely

matched. In particular, I observed that the filters did not have matching phase delays at

the 40 kHz ultrasound frequency.

Having implemented functions for working with the waveforms in MATLAB, I also

55

tried building several types of software filters. Doing the filtering in software allows me to

run each of the waveforms through one single filter and avoids the mismatch of hardware

filters. However, the phase delay characteristics of standard filters fundamentally make

them unsuitable for the Compass application. In particular, narrow and sharp filters exhibit

extremely non-linear phase delays that cause the waveform envelope to be shifted several

periods in the 2500 sample window. This corrupts the waveform information and reduces

correlation accuracy. From this experience, it seems better to focus on building a good

noise and oscillation-free circuit than to introduce variability from filtering the waveforms.

4.3.3 Pulse Shaping

The principle of the correlation measurement suggests that when the waveforms are more

irregular, the correlation will have a more prominent peak. To demonstrate this, I applied

the correlation method to waveforms generated by the standard Cricket ultrasound pulse

and ultrasound noise that I generated by banging a pair of scissors against some metal.

Compare the correlation plots in figure 4-8a with the plots in figure 4-8c. (a) shows the

usual response to the standard Cricket pulse while (c) shows the response to the generated

noise.

Waveforms that exhibit impulse-like behavior are easier to correlate. Operating on this

principle, I want to generate a pulse that can correlate better in order to improve the

accuracy of the correlation measurement. In Section 2.3.1, I discussed the Cricket beacon’s

capability to generate ultrasound pulses. To summarize, the version 2 Crickets generate

a six-period 40 kHz square wave by toggling a pin on the Cricket microcontroller at 40

kHz for six cycles. This six-period square wave drives the ultrasound transmitter. The

difficulty with the standard Cricket pulse is that it rings-up slowly. The current Cricket

hardware has very limited capability to generate other ultrasound pulses because (i) the

microcontroller can only generate signals containing low and high amplitude and (ii) the

ultrasound transmitters are narrow-bandwidth.

56

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10−4

−1.5

−1

−0.5

0

0.5

1

1.5
Plot of ultrasound waveforms

time (seconds)

am
pl

itu
de

 (v
ol

ts
)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10−4

−1.5

−1

−0.5

0

0.5

1

1.5

time (seconds)

am
pl

itu
de

 (v
ol

ts
)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10−4

−1.5

−1

−0.5

0

0.5

1

1.5

time (seconds)

am
pl

itu
de

 (v
ol

ts
)

(a)

(b)

(c)

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 1!2

n
o

rm
a

liz
e

d
 c

ro
s
s
 c

o
rr

e
la

ti
o

n

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 1!3

wave2 time shift (µs)

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 1!4

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 2!3

n
o

rm
a

liz
e

d
 c

ro
s
s
 c

o
rr

e
la

ti
o

n

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 2!4

wave2 time shift (µs)

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 3!4

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 1!2

n
o

rm
a

liz
e

d
 c

ro
s
s
 c

o
rr

e
la

ti
o

n

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 1!3

wave2 time shift (µs)

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 1!4

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 2!3

n
o

rm
a

liz
e

d
 c

ro
s
s
 c

o
rr

e
la

ti
o

n

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 2!4

wave2 time shift (µs)

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 3!4

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 1!2

n
o
rm

a
liz

e
d
 c

ro
s
s
 c

o
rr

e
la

ti
o
n

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 1!3

wave2 time shift (µs)

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 1!4

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 2!3

n
o
rm

a
liz

e
d
 c

ro
s
s
 c

o
rr

e
la

ti
o
n

!50 !25 0 25 50
!1

!0.5

0

0.5

1
sensor pair 2!4

wave2 time shift (µs)

!25 0 25
!1

!0.5

0

0.5

1
sensor pair 3!4

standard Cricket pulse

modified pulse

high-amplitude noise

Figure 4-8: A plot of ultrasound signal and resulting normalized cross correlations for
varying time delays on two sensor pairs. (a) is the response to the standard six-period
Cricket ultrasound pulse. (b) is the response to the modified pulse. (c) is the response to
ultrasound noise generated by banging a pair of scissors against metal. Observe that the
noisy signal has prominent peaks of correlation. The modified pulse has a better correlation
than the standard Cricket pulse.

57

Figure 4-9: The standard Cricket ultrasound pulse on the left, and the modified pulse for
the Compass on the right.

The current Cricket hardware can drive the ultrasound transmitter with square waves

of varying frequency and phase. The transmitter’s narrow-bandwidth prevents any useful

use of square waves of varying frequency, but we can achieve some benefit by varying the

phase of the driving signal. Figure 4-9 shows two received ultrasound waveforms, the left in

response to the standard Cricket pulse and the right in response to a modified driving signal.

This modified driving signal consists of the standard six-period 40 kHz square immediately

followed by seven periods of 40 kHz square that are exactly π radians out-of-phase.

The modified beacon pulse takes advantage of the highly resonant nature of the ultra-

sound transmitter. The first few periods of the out-of-phase driving signal counteract the

ringing on the transmitter. Then, the following periods of the out-of-phase signal generate a

secondary out-of-phase ringing. The resulting ultrasound pulse has more features to aid the

correlation method. Figure 4-8b shows the modified pulse and some corresponding correla-

tion curves. The transmitting beacon position and compass orientation are held constant

between Figure 4-8a and Figure 4-8b.

I conducted the accuracy experiments described in Section 4.3.1 with the beacon trans-

mitting the modified pulse. I again collected over 400 measurements of time delays on

sensor pairs. The use of the modified pulse reduced the measurement error rate on sensor

pairs from 18.5% to 11.6%. Sets of six measurements were now correct 47.2% of the time

in this collection of experimental data.

58

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
Visualization of Differential Differences

x position

y
po

si
tio

n

US1 US2

US3

US4

Figure 4-10: A visualization of the differential distances on sensor pairs. Lines representing
the differential distances are displayed between each corresponding sensor pair. The length
of the lines represent the differential distance magnitude. The diamond markers mark the
end of the segment, which can be interpreted as an arrowhead indicating the sign of the
differential distance. In this simulated example, the beacon is positioned at (10, 10). This
beacon position generates small differential distances between sensors 2 and 3 and sensors
2 and 4, and a large differential distance between sensors 1 and 4.

4.3.4 Error Detection

For each set of measurements produced by the Compass sensor array, I visualize the dif-

ferential distances as shown in Figure 4-10. Relationships exist between these differential

distances that allow me to perform error detection on the measurements. Imagine the dif-

ferential distances forming a graph between the sensor pairs. For each cycle in this graph,

which are triangles, the sum of the differential distance of two edges must equal the differ-

ential distance of the third edge. By looking at this relationship on the four cycles of the

array geometry, I can detect and sometimes correct measurement errors.

These relationships permit error correction when there is only one error in the six mea-

surements. From the collected data, however, there are often sets of measurements where

there are two errors. To handle these errors, I can instead perform error detection and

reject sets of measurements containing errors. With sufficient beacon density, I wait until I

receive two error-free measurements from beacons. I then localize those beacons and apply

the global translation step.

59

60

Chapter 5

Results

In the previous chapter, I presented a number of implementation techniques that solve

problems in lower layers of the Compass. In this chapter I characterize the performance of

the implemented Cricket Compass prototype. I present experimental setup and procedures

and analyze the collected data, demonstrating end-to-end functionality of the Compass. I

then suggest areas for future research based on these results.

5.1 Localizing Beacons

After receiving an ultrasound pulse from a beacon, the Compass attempts to estimate the

position of that beacon in its own coordinate system. In this section, I characterize the

Compass localization accuracy by setting up a single beacon at a fixed position, capturing

an ultrasound pulse, and applying my implementation of the localization methods.

5.1.1 Setup and Procedure

In this experiment, I used two beacons: one for calibration and one as a target beacon

for localization. I mounted the Compass prototype on the precision optics equipment de-

scribed in Section 2.3.4 to perform precise rotation in the horizontal plane. I performed the

experiment using the following setup and experimental procedure:

1. I selected an open lab area where multipath signals do not contribute to measurements.

The lab area has a double-height ceiling, and beacons mounted on this ceiling do not

always have sufficient range to reach ground level. Therefore, I mounted beacons on

61

+z+x

+y

(a) (b)

d=1.4m

z=
1.

0m

compass

calibration beacon
target beacon

Figure 5-1: Photos of the beacon localization experiment. (a) shows the Compass prototype
mounted on the rotating platform with an overlay of the axes in the Compass’ coordinate
space. (b) shows the lab space with the positions of the calibration beacon, target beacon,
and Compass.

tripods and pillars in the lab space to achieve beacon placement at more moderate

heights.

2. I placed one beacon above the rotating platform to assist in calibration. I located this

calibration beacon precisely above the center of the Compass sensor array by using a

plumb line hanging down from the beacon’s ultrasound transmitter. The plumb bob

rested directly above the central ultrasound receiver on the array.

3. Using a spirit level, I leveled the rotating platform along two orthogonal axes to ensure

that the rotation occurs purely in the horizontal plane.

4. I turned the calibration beacon on, and leveled the sensor array such that when

rotated, the waveforms received by the sensor array were minimally out of phase. I

was unable to find a calibration such that all waveforms were precisely in-phase. After

this calibration procedure, the sensor array was optimally level and rotated only in

the horizontal plane.

5. I placed the target beacon on a pillar at a fixed distance of 1.4m and height of 1.0m

with respect to the beacon as shown in Figure 5-1b. Also note that this target beacon

has been modified to transmit the modified Compass pulse.

6. I rotated the Compass in 10◦ increments, from 0◦ to −180◦. These degree headings

are the headings of the beacon with respect to the Compass coordinate system. I

62

1

23

4
+x

+y

1

2

3

4

+x

+y

1
2

3 4

+
x

+
y

beacon heading, 0 degrees

(a) (b)

beacon heading, -45 degrees

(c)

beacon heading, -120 degrees

Figure 5-2: Illustration of the Compass rotation in the beacon localization experiment. The
compass rotates from a beacon heading of (a) 0◦ through (b) −45◦ and (c) −120◦ on its
way to −180◦.

defined the Compass coordinate system using the sensor array geometry as shown in

Figure 5-1a. I have also illustrated this rotation in Figure 5-2 with an overlay of the

Compass x and y axes. This rotation is the same as if I held the Compass stationary

and rotated the beacon about the Compass. However, by rotating the Compass on

the precision mount, I am able to precisely fix the distances and amount of rotation.

7. At each 10◦ increment, I localize the beacon position. Specifically, I capture the

ultrasound waveforms generated by the beacon pulse on the Compass sensor array.

I use the correlation method to measure the six inter-sensor differential distances. I

check these six distances for consistency and if there are no errors, I estimate the

beacon’s position. When there were errors, I attempted to localize up to five times at

that heading before giving up.

5.1.2 Analysis

Figure 5-3 shows the results of this experiment and gives an idea of the Compass accuracy

in localizing beacon positions. Note that at -180◦ and -170◦ I was unable to localize the

beacon because of consistent measurement errors.

I have separated the plots in Figure 5-3 into the xy and xz planes to illustrate the differ-

ent error in localizing the x, y, and z coordinates. Recall that the z coordinate calculation

depends on the both the x and y coordinate estimates, as described by Equation 3.3. The

63

-1.5

-1

-0.5

0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis (meters)

x-axis (meters)

y-
ax

is
(m

et
er

s)
z-

ax
is

(m
et

er
s)

Figure 5-3: A plot of a beacon localized using the Compass. I rotated the Compass at 10◦

increments at a fixed distance of 1.4m and height of 1m with respect to the beacon. Both
plots show the localized beacon position with respect to the Compass, which lies at the
origin. The top plot shows positions in the xy plane while the bottom plot shows positions
in the xz plane. The dotted lines represent the beacon’s actual physical path, with Compass
readings taken at the cross marks. The diamond, box, and triangle markers represent three
different position estimates for each real beacon position.

plots show how the z error is directly related to the x and y error. Table 5.1 summarizes

the error in the position estimates broken down by coordinate axis.

Looking more closely at figure 5-3, the xy plot shows that there is some grouping of

positions that can explain a source of error. As shown in Figure 4-3, in each 30◦ sector,

there are three sensor pairs on the Compass that can provide accurate differential distances.

As the Compass rotates through 30◦ sectors in Figure 5-3, the sensor pairs used to make

measurements changes. This effect is most prominent around the trio of readings at −30◦,

−40◦, and −50◦. The estimates at these three angles come from the same three sensor pairs

and exhibit similar accuracy.

64

Coordinate Axis Mean Error Error Std. Dev.
x 9.20 cm 7.66 cm
y 7.05 cm 5.09 cm
z 10.10 cm 9.52 cm

Table 5.1: Mean error and standard deviation of error in each coordinate axis.

The change in accuracy as different sensor pairs are selected for use in localization is a

manifestation of the difficulty of calibrating the sensor array. For just a single pair of rigidly

mounted sensors, it is simple to make minute adjustments to cancel out any unevenness

in their mounting. However, for a rigidly mounted array of four sensors, it is difficult to

completely level the array to remove any unevenness.

5.2 End-to-End Orientation

The end-to-end functionality of the Compass is estimating its 3-DOF orientation in the

Cricket coordinate system. In this section, I build upon the experiment of the previous

section. I characterize and demonstrate the end-to-end functionality of the Compass using

position estimates to two beacons and translation between Compass and Cricket coordi-

nates.

(a) (b)

compass

calibration beacon target beacon 1

target beacon 2

compass

calibration beacon

target beacon 1

target beacon 2

Figure 5-4: Photos of the Compass end-to-end demonstration. (a) and (b) show two views of
the lab space with the positions of the calibration beacon, two target beacons, and Compass.

65

+z+x

+y

+x
+y

(a) (b)

+z

Figure 5-5: Photos depicting the Compass and Cricket coordinate spaces in the end-to-
end demonstration. (a) shows the Compass coordinate axes, which are determined by the
orientation of the Compass. (b) shows the Cricket coordinate axes, which I defined when
measuring the beacons and the Compass position.

5.2.1 Setup and Procedure

In this experiment, I used three beacons: one beacon for calibration and two target beacons

for localization. I again mounted the Compass prototype on the precision optics equipment.

I performed the experiment using the following setup and experimental procedure:

1. I followed the setup and calibration procedure in the previous section to optimally

level the Compass sensor array.

2. I placed two beacons in the lab area as shown in Figure 5-4. Target beacon one is at

a distance of 1.4m and height of 1.0m while target beacon two is at a distance of 1.5m

and height of 1.2m.

3. I established an accurate and precise Cricket coordinate system by using a laser

rangefinder and trilateration methods to calculate the two exact beacon positions

and Compass position. Later, I input these coordinates and distance measurements

into the localization and registration algorithms.

4. I then rotated the Compass in 10◦ increments for a full 360◦ rotation. At each in-

crement, I localized each of the target beacons as described in the previous section.

From the setup, I have the coordinates of three points in Cricket space, and from the

Compass localization I have two points in Compass space. The third point in Compass

66

space is the origin, representing the Compass. I then applied the registration method

to find the optimal rotation from the Cricket to the Compass coordinate systems.

1.1 Angle Roll Pitch Yaw Angle Roll Pitch Yaw

0 2.3 1.1 0.2 187 1.8 1.5 188.2

8.7 7 197

3.6 17 -1.8 8.7 17.5 207

2.7 27 -4.9 3.6 26.4 217 1.6 -3.3 213.7

1.6 37 -5.7 2.7 34.1 227 -1.3 1.9 223.3

3.8 47 0.9 1.6 39.5 237

57 1.6 -3.8 52.6 247

67 257 10.1 3.9 263.6

77 267 12.1 -2.6 271.9

5.9 87 277

97 -5.3 -5.9 100.1 287

107 297

117 307 4.3 1.4 309.2

127 317

137 327 1 1.9 327.7

147 337 3.4 -1.6 337.4

157 347

0.2 167 357

1.5 177 4.3 -0.2 177

3.3

1.9

3.9

2.6

1.4

1.9

1.6

2.85625

8.7

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

no estimate

Table 5.2: Results of end-to-end orientation demonstration.

5.2.2 Analysis

Table 5.2 summarizes the results of this demonstration. For each rotation increment in the

horizontal plane, I present the Compass estimate for its orientation in Cricket coordinates.

I have converted the quaternion orientation output into the more intuitive roll-pitch-yaw

notation. In this demonstration, I only rotated the Compass about the z-axis, so the roll

and pitch should be zero, and the yaw should follow the angle rotated about the z-axis.

The average orientation error was 2.6◦ in roll, 3.9◦ in pitch and 2.9◦ in yaw. The maximum

observed error was 7.5◦ roll, 12.1◦ in pitch and 8.7◦ in yaw.

In 21 of the 37 orientations I tested, the Compass was unable to receive error-free mea-

surements from both of the beacons and was therefore unable to estimate its orientation. I

introduced a third beacon to help alleviate this problem. At the current Compass error rate,

however, a beacon density of three was still insufficient to provide a reasonable guarantee

of two error-free measurements at the Compass.

Figure 5-6 shows a visualization of the rotating Compass based on its estimated ori-

entation. 12 of the 16 successful orientations are shown. This demonstration successfully

proves the concept for the Cricket Compass.

67

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

0 degrees 17 degrees 37 degrees

57 degrees 97 degrees 177 degrees

187 degrees 217 degrees 257 degrees

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

307 degrees 327 degrees 337 degrees

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

!0.01

!0.005

0

0.005

0.01

!0.01

!0.005

0

0.005

0.01
!0.01

!0.008

!0.006

!0.004

!0.002

0

0.002

0.004

0.006

0.008

0.01

x!axisy!axis

z!
ax
is

Figure 5-6: Estimated Compass end-to-end orientation. Each subfigure is a plot of the
estimated Compass orientation for captioned degrees of rotation. The triangle outlines the
three outer sensors; a line runs along the Compass +y-axis originating from the central
sensor. The circles represent the actual locations of the sensors.

68

5.3 Future Work

Future research on the Compass could take the form of improvements or new methods

in any layer of the Compass. At the lowest level, the primary area for improvement is the

Compass measurement of the differential distances. Increasing the accuracy of the measure-

ments would produce much more accurate position and orientation estimates. Increasing

the integrity of the measurements would also permit the Compass to operate with fewer

restrictions and would reduce the beacon density necessary for orientation. On a higher

level, there may be new methods to correct errors or improve accuracy by leveraging new

algorithms or Cricket infrastructure. Finally, the Compass hardware and software can be

tightly integrated with Cricket to enable orientation-aware applications.

Improvements could take the following forms:

• Using more sensors and different sensor geometries for measurements.

• Designing and fabricating a precision hardware prototype, taking care to minimize

noise and to ensure precise placement of ultrasound sensors.

• Experimenting with a more flexible high-speed analog-to-digital converter to explore

new methods of measuring phase difference or to improve the correlation phase mea-

surement method.

• Designing and characterizing linear phase filters for ultrasound waveforms.

• Exploring the use of higher-bandwidth ultrasound transceivers to improve the preci-

sion of distance measurements.

• Implementing a Cricket daughterboard to interface the Compass in real-time with

Cricket. The daughterboard would require a dedicated processor to carry out the

correlations. An application programming interface could also be specified.

69

70

Chapter 6

Contributions

In this thesis, my primary contributions are:

• building upon Priyantha et al.’s planar orientation method to enable orientation in

the Cricket location system. I present experimental experience and results using this

method, which motivate the design choices in the Cricket Compass.

• proposing a set of methods to calculate end-to-end orientation from an array of well

placed sensors operating within the Cricket system. I use the normalized cross cor-

relation between two waveforms to precisely measure the relative phase difference,

from which I calculate a differential distance. I apply vector methods to differential

distances measured between sensors in order to localize the source of an ultrasound

pulse. I then register those localized sources with known positions in a reference co-

ordinate system to determine end-to-end orientation. Implementing these methods

does not require any trigonometric functions.

• designing a prototype of the Cricket Compass. I present a sensor array geometry that

enables omnidirectional sensor coverage and discuss the effects of analog-to-digital

conversion parameters. I also show how to bootstrap from a set of sensor array

measurements to select a subset of accurate measurements to use in calculations.

• implementing a prototype of the Cricket Compass and demonstrating end-to-end func-

tionality. I build supporting hardware and interface this hardware with an oscilloscope

and software methods implemented in MATLAB. I describe an error detection method

and modification to Cricket ultrasound pulses, which improve the Compass robustness.

71

Finally, I characterize the performance of this implementation while demonstrating

end-to-end functionality.

In this thesis I also:

• characterize the use of Cricket ultrasound for estimating distance and orientation.

I identify the varying ramp-up of ultrasound on narrow-bandwidth transceivers as

the chief obstacle to timing ultrasound precisely. I outline the capabilities of Cricket

ultrasound hardware and describe one method to modify Cricket ultrasound pulse

characteristics.

• identify specific areas for improvement. Accurate differential distance measurements

are critical to improving accuracy. New hardware can permit new techniques to

improve or supersede those I have presented. Real-time integration with Cricket

can permit better characterizations and can enable the development of context-aware

applications.

72

Appendix A

Compass Hardware Design

A.1 Analog Ultrasound Gain Circuit

3.9K

0.1uF

-
+

4.2K

500K

0.1uF

-
+

10K

220K

10K

+VBAT

+VBAT

10K

+VBAT

0.1uF

output
to A/D

Murata
MA40S4R
sensor

Figure A-1: The Compass ultrasound analog gain circuit. Four copies of this circuit pro-
vide gain on the four channels of ultrasound. This circuit operates from a supply of 2AA
batteries.

73

A.2 Sensor Array Specifications and Naming

1 2

3

4

+x

+y

Figure A-2: Numbering scheme and coordinate axes defined for the ultrasound sensor array.
Sensors are not drawn to scale.

Sensor x y
1 -14 -8
2 14 -8
3 0 0
4 0 16

Table A.1: I mounted the sensors using the circuit board inter-hole spacing of 2.54mm.
This table shows the x and y positions of the center of the sensors in grid units where 4
grid units = 1 inter-hole space = 2.54mm.

Sensor 1 Sensor 2 Pair Number Angle Separation
1 2 1 0.0◦ 17.8 mm
1 3 2 29.7◦ 10.2 mm
1 4 3 59.7◦ 17.6 mm
2 3 4 120.3◦ 10.2 mm
2 4 5 150.3◦ 17.6 mm
3 4 6 180.0◦ 10.2 mm

Table A.2: Sensor pair naming, orientations, and separation distances used for position
calculations.

74

A.3 Murata MA40S4R Ultrasonic Sensor Information

18

1

!Note • Please read rating and !CAUTION (for storage and operating, rating, soldering and mounting, handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering.

Piezoelectric Ceramic Sensors (PIEZOTITEr)
Ultrasonic Sensors

Open Structure Type

■ Features
1. Compact and light weight.
2. High sensitivity and sound pressure.
3. Less power consumption.
4. High reliability.

■ Applications
Burglar alarms, Range finders, Automatic doors, Remote
control.

∗

12
.0
±0

.5

ø16.0±0.5

10.0±0.3

9.
0±

1.
0

2-ø1.2±0.1

Case (Plastic)

 ∗ : EIAJ Code
 : R or S

in mm

MA40B8R/S

2-ø0.64 ±0.1

5.0±0.3

10
.0
±1

.0
7.

1±
0.

3
ø9

.9
±0

.3

∗

∗ : EIAJ Code
 : R or S

in mm

MA40S4R/S

7.
1±

0.
25

5.
0±

0.
2

2 - 0.64 ±0.1p

Sealed by Silicone glue

ø9
.9
±0

.3

5.0±0.25

* : EIAJ Code
(in mm)

*MA40S5

Part Number Construction Using
Method

Nominal
Freq.
(kHz)

Overall
Sensitivity
(mVp-p)

Sensitivity
(dB)

S.P.L.
(dB)

Direc
tivity

(°)
Cap.
(pF)

Operating
Temp. Range

(°C)

Detectable
Range

(m)

Resolu
tion
(mm)

Max.
Input Voltage

(Vp-p)

MA40B8R Open struct. Receiver 40 - -63 typ.
(0dB=10V/Pa) - 50 2000 -30 to 85 0.2 to 6 9 -

MA40B8S Open struct. Transmitter 40 - - 120 typ.
(0dB=0.02mPa) 50 2000 -30 to 85 0.2 to 6 9 40

Continuous signal

MA40S4R Open struct. Receiver 40 - -63 typ.
(0dB=10V/Pa) - 80 2550 -40 to 85 0.2 to 4 9 -

MA40S4S Open struct. Transmitter 40 - - 120 typ.
(0dB=0.02mPa) 80 2550 -40 to 85 0.2 to 4 9 20

Continuous signal

MA40S5 Open struct. Dual Use 40 20 typ. - - 60
typ. 2550 -30 to 85 0.5 to 2 9

20
Pulse width 0.4ms

Interval 100ms
Distance:30cm, Overall sensitivity:0dB=10Vp-p, Sensitivity:0dB=1Vrms/µbar, Sound pressure level:0dB=2x10-4µbar, 1µbar=0.1Pa
The sensor can be used in the operating temperature range.
Please refer to the individual specification for the temperature drift of Sensitivity/Sound pressure level or environmental characteristics in that temperature range.
Directivty, detectable range and resolution are typical values. They can be changed by application circuit and fixing method of the sensor.

5

Please read rating and !CAUTION (for storage and operating, rating, soldering and mounting, handling) in this PDF catalog to prevent smoking and/or burning, etc.
This catalog has only typical specifications. Therefore, you are requested to approve our product specification or to transact the approval sheet for product specificaion before ordering.

!Note P19E7.pdf 02.6.26

Figure A-3: Murata ultrasonic sensor physical dimensions.

20

1

!Note • Please read rating and !CAUTION (for storage and operating, rating, soldering and mounting, handling) in this catalog to prevent smoking and/or burning, etc.

• This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering.

! S. P. L. -Freq. Characteristics

MA40B8R

-100
30

Frequency (kHz)

S
e
n
s
it
iv

it
y
 (

d
B

)

35 40 45 50

-90

-80

-70

-60

-50

-40

MA40S4R

-100
30

Frequency (kHz)

S
e
n
s
it
iv

it
y
 (

d
B

)

35 40 45 50

-90

-80

-70

-60

-50

-40

! Sensitivity-Freq. Characteristics

MA40B8S

80
30

Frequency (kHz)

S
o
u
n
d
 P

re
s
s
u
re

 L
e
v
e
l
(d

B
)

35 40 45 50

90

100

110

120

130

140

MA40S4S

30

Frequency (kHz)

35 40 45 50
80

S
o
u
n
d
 P

re
s
s
u
re

 L
e
v
e
l
(d

B
)

90

100

110

120

130

140

5

Please read rating and !CAUTION (for storage and operating, rating, soldering and mounting, handling) in this PDF catalog to prevent smoking and/or burning, etc.

This catalog has only typical specifications. Therefore, you are requested to approve our product specification or to transact the approval sheet for product specificaion before ordering.
!Note P19E7.pdf 02.6.26

Figure A-4: Murata ultrasonic sensor frequency response.

5

19

1

!Note • Please read rating and !CAUTION (for storage and operating, rating, soldering and mounting, handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering.

■ Directivity in Sensitivity
MA40B8R

90˚

60˚

30˚

0˚

30˚

60˚

90˚

At
te

nu
at

io
n

(d
B)

−30

−20

−10

MA40S4R

90˚

60˚

30˚

0˚

30˚

60˚

90˚

At
te

nu
at

io
n

(d
B)

−30

−20

−10

■ Directivity in S. P. L.
MA40B8S

90˚

60˚

30˚

0˚

30˚

60˚

90˚

At
te

nu
at

io
n

(d
B)

-30

-20

-10

■ Directivity in S. P. L.
MA40S4S

90˚

60˚

30˚

0˚

30˚

60˚

90˚

At
te

nu
at

io
n

(d
B)

-30

-20

-10

■ Directivity in Overall Sensitivity
MA40S5
Beam Pattern

0°

30° 30°

60° 60°

90° 90°

0(dB)

-10(dB)

-20(dB)

Please read rating and !CAUTION (for storage and operating, rating, soldering and mounting, handling) in this PDF catalog to prevent smoking and/or burning, etc.
This catalog has only typical specifications. Therefore, you are requested to approve our product specification or to transact the approval sheet for product specificaion before ordering.

!Note P19E7.pdf 02.6.26

Figure A-5: Murata ultrasonic sensor directivity in sensitivity.

75

76

Appendix B

Compass Functionality

This appendix describes the setup and use of the Compass hardware and software.

B.1 Setup

In addition to the sensor array and ultrasound gain circuits, I use a Tektronix TDS2024
oscilloscope with the TDS2CMAX communication module installed. On the host computer,
I run MATLAB v6.5 with the Instrument Control Toolbox installed. Additionally, I use
the Quaternion Toolbox package v1.2.2 by Jay St. Pierre and 3D Rotations package by
Giampiero Campa.1

Connect the four channels of amplified ultrasound output to the four input channels of
the oscilloscope. In the options menu of the scope, set the RS-232 baud rate to 19200 and
set flow control to hardware flagging. Connect the scope via RS-232 serial cable to the host
computer through serial port 2. Serial port 1 can be used by editing the tds_sample.m file.

B.2 Demonstration

To demonstrate localization of a single beacon:

1. Place a beacon in a location where the Compass can hear the ultrasound pulses. You
can check for this by manually triggering the oscilloscope and looking at the waveforms
while the beacon is transmitting ultrasound.

2. Use the function compass_single to start the beacon localization method. The func-
tion will prompt you for the distance to the beacon in meters. The function will then
capture the next set of ultrasound waveforms that trigger the scope.

3. The function will perform error detection. If the measurements pass the error detec-
tion, the function returns the (x, y, z) coordinates of the beacon in Compass coordi-
nate space as defined in Appendix A by the sensor array. If an error is detected, the
function returns the coordinates (0, 0, 0). The coordinates are in units of meters.

To demonstrate end-to-end orientation using two beacons:

1These files are available at MATLAB Central. http://www.mathworks.com/matlabcentral/

77

1. Setup the Cricket coordinate space, either using Crickets or other methods. Find
the location of the Compass and two beacons in this space. Place the beacons in
locations where the Compass can hear the ultrasound pulses. You can check for
this by manually triggering the oscilloscope and looking at the waveforms while the
beacons are transmitting ultrasound.

2. Use the function cricket_compass to start the process. The function will prompt
you for the (x, y, z) coordinates of beacon 1, beacon 2, and the Compass in the Cricket
coordinate space from step 1.

3. The function will prompt you to turn off all beacons except beacon 1. Once this is
done, strike any key and cricket_compass will attempt to localize the beacon. If the
measurement fails to pass error detection, you can try again or abort.

4. After beacon 1 has been localized, cricket_compass will repeat step 3 for beacon 2.

5. If cricket_compass localizes both beacon 1 and 2, the function will calculate and
return the end-to-end orientation in unit quaternion notation. It will also display the
Euler x-y-z (roll-pitch-yaw) notation.

B.3 MATLAB functions

The Compass software methods are implemented in MATLAB m-files. The Compass m-files
are available in the Cricket CVS repository. The following is the source for each MATLAB
function, including the self-documentation comments for each function.

function array graph plot(phases)

% ARRAY GRAPH PLOT Cricket Compass utility function
%
% ARRAY GRAPH PLOT(PHASES) plots the measured differential distances
% between sensors on the compass ultrasound sensor array.
%
% PHASES is a 4x4 matrix of measured phase differentials of the form:
% PHASES = [0 t12 t13 t14; . . .
% -t12 0 t23 t24; . . . 10
% -t13 -t23 0 t34; . . .
% -t14 -t24 -t34 0];
% where txy is the phase difference from sensor x to sensor y.
%
% This function converts the phases into distances using predefined speed
% of sound and plots them on a representation of the sensor array.
%
% This function has a predefined sensor array geometry. All distances are
% in meters, and all times are in seconds.
% 20
% See also US CORRELATE, EXPECTED PHASE.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

speed sound = 344; % speed of sound 344 m/s at approx 22 Celsius

% set sensor array geometry. each row corresponds to x,y,z position of
% sensor# where #=row. sensor3 lies at the origin. conversion from circuit 30
% board layout inter-hole spacing is 4 units = 2.54mm

78

sensor= [−14 −8 0; 14 −8 0; 0 0 0; 0 16 0] .∗ (2.54e−3 / 4);

% visualize signed phase differences as vectors between points
hold on;
title('Visualization of Differential Differences', 'FontSize', 8);
set(gca, 'FontSize', 7);
axis([−1.5 1.5 −1.5 1.5].∗1e−2);
Xlabel('x position');
Ylabel('y position'); 40

% define what the plotted sensors look like
sensor point style = 'blackx';
sensor point size = 10;
sensor style = 'blacko';
sensor size = 10;

% plot points representing ultrasound sensors on sensor array
plot(sensor(:,1), sensor(:,2), sensor point style, 'MarkerSize', sensor point size);
plot(sensor(:,1), sensor(:,2), sensor style, 'MarkerSize', sensor size); 50

% label ultrasound sensors
text(sensor(1,1), (sensor(1,2)−1e−3), 'US1', 'HorizontalAlignment', 'center');
text(sensor(2,1), (sensor(2,2)−1e−3), 'US2', 'HorizontalAlignment', 'center');
text(sensor(3,1), (sensor(3,2)−1e−3), 'US3', 'HorizontalAlignment', 'center');
text(sensor(4,1), (sensor(4,2)+1e−3), 'US4', 'HorizontalAlignment', 'center');

% plot dotted lines between sensor pairs
US line style = 'b:';
for j = 2:4 60

plot([sensor(1,1) sensor(j,1)], [sensor(1,2) sensor(j,2)], US line style); % pairs: 1-2, 1-3, 1-4
end
for j = 3:4

plot([sensor(2,1) sensor(j,1)], [sensor(2,2) sensor(j,2)], US line style); % pairs: 2-3, 2-4
end
plot([sensor(3,1) sensor(4,1)], [sensor(3,2) sensor(4,2)], US line style); % pair 3-4

% calculate direction vectors for each sensor pair
dir vector = repmat(NaN, 6, 3);
for i = 1:3 70

dir vector(i,:) = sensor((i+1),:) − sensor(1,:); % pairs: 1-2, 1-3, 1-4
end
for i = 4:5

dir vector(i,:) = sensor((i−1),:) − sensor(2,:); % pairs: 2-3, 2-4
end
dir vector(6,:) = sensor(4,:) − sensor(3,:); % pair: 3-4

% find midpoint between each sensor pair, this is where the differential
% distance is centered
start point = [sensor(1,:); sensor(1,:); sensor(1,:); sensor(2,:); sensor(2,:); sensor(3,:)]; 80
mid point = start point + dir vector./2;

% normalize direction vectors, also calculate separation distances
for i = 1:6

dir vector norm(i,:) = dir vector(i,:) ./ norm(dir vector(i,:));
separation(i,1) = norm(dir vector(i,:));

end

% prepare to plot phases (converted to distance) in correct direction
% repackage phase information into a vector 90
phases vector = [phases(1,2); phases(1,3); phases(1,4); phases(2,3); phases(2,4); phases(3,4)];
distances = phases vector .∗ speed sound;

end point = [sensor(2,:); sensor(3,:); sensor(4,:); sensor(3,:); sensor(4,:); sensor(4,:)];

to end = repmat(NaN, 6, 3); to start = repmat(NaN, 6, 3);

% plot each of the six differential distances, centered on the midpoints
for i = 1:6

79

to end(i,:) = dir vector norm(i,:); 100
to start(i,:) = dir vector norm(i,:) .∗ (−1);
to end point(i,:) = mid point(i,:) + to end(i,:) .∗ (distances(i,:)/2);
to start point(i,:) = mid point(i,:) + to start(i,:) . ∗(distances(i,:)/2);
plot([to start point(i,1) to end point(i,1)], [to start point(i,2) to end point(i,2)], . . .

'r-', 'LineWidth', 3);
plot(to end point(i,1), to end point(i,2), 'rd', 'MarkerSize', 10);

end
axis equal;

function [position 3d] = compass single()

% COMPASS SINGLE Localize a single beacon in Compass coordinates.
%
% [POSITION 3D] = COMPASS SINGLE localizes the position of a single
% beacon. The function prompts the user for the distance to the Cricket
% beacon and captures measurements on the Compass sensor array via the
% oscilloscope. It then detects errors on the measurements. If
% measurements pass error detection, it then estimates the beacon
% location. 10
%
% POSITION 3D [x y z], the estimate of beacon location in Compass
% coordinates. Units are in meters. Value is [0 0 0] if measurements
% failed to pass error detection.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

fprintf(1, '\n::: Starting compass routines :::\n'); 20

d measured = input('Enter distance to beacon (meters): ');

%Acquire waveform from tektronix scope, transfer data via serial into matlab
[w1, w2, w3, w4, increment] = tds sample;

%get phase measurements from correlation and shift method
phases = US correlate(w1, w2, w3, w4, increment, false);

% prevent divide by zeros by adding tiny values to the phase matrix 30
phases = phases + (ones(4).∗1e−12);

%detect errors on this phase measurement
error = error detect(phases);
if ˜error

position 3D = position solver(phases, d measured);
else

fprintf(1, 'Bypassing beacon1 position estimation.\n');
position 3D = [0 0 0];

end 40

function [ORIENTATION] = cricket compass()

% CRICKET COMPASS Estimate the orientation of the Compass.
%
% [ORIENTATION] = CRICKET COMPASS determines the orientation of the Compass.
% The function interactively steps the user through the steps:
% 1. Asking for the location of:
% a. beacon1 in ∗Cricket∗ coordinates
% b. beacon2 in ∗Cricket∗ coordinates
% c. the Compass in ∗Cricket∗ coordinates 10
% 2. Localizing beacon1 in ∗Compass∗ coordinates
% 3. Localizing beacon2 in ∗Compass∗ coordinates
% It then outputs the estimate of orientation.
%

80

% ORIENTATION is an estimate of the quaternion that converts the Cricket
% coordinate system into the Compass coordinate system, which is the
% end-to-end orientation of the physical compass in the Cricket
% coordinate space.
%
% See also COMPASS SINGLE, ROTATION REGISTRATION. 20
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

fprintf(1, '\n::: Starting compass routines :::\n');

%%% first get beacon1, beacon2 and listener/compass coordinates:
fprintf(1, '\n*** Asking for beacon1, beacon2 and compass positions in Cricket coordinates ***\n');
fprintf(1, 'Input position coordinate values in meters.\n'); 30

b1x = input('Enter beacon1 x: ');
b1y = input('Enter beacon1 y: ');
b1z = input('Enter beacon1 z: ');
b1 = [b1x b1y b1z];
fprintf(1, '=> Beacon1 position: (%2.2f, %2.2f, %2.2f)\n\n', b1);

b2x = input('Enter beacon2 x: ');
b2y = input('Enter beacon2 y: ');
b2z = input('Enter beacon2 z: '); 40
b2 = [b2x b2y b2z];
fprintf(1, '=> Beacon2 position: (%2.2f, %2.2f, %2.2f)\n\n', b2);

listener x = input('Enter compass x: ');
listener y = input('Enter compass y: ');
listener z = input('Enter compass z: ');
listener = [listener x listener y listener z];
fprintf(1, '=> Listener position: (%2.2f, %2.2f, %2.2f)\n\n', listener);

distance1 = norm(b1 − listener); 50
distance2 = norm(b2 − listener);
fprintf(1, '=> Beacon1 distance: %2.2f, beacon2 distance: %2.2f meters\n', distance1, distance2);

%%% get ultrasound input from the two beacons
got one = false;
got two = false;

fprintf(1, '\n\n\n::: Attempting to estimate beacon1 position :::\n');
fprintf(1, 'Turn BEACON1 on. Make sure all other beacons are OFF.\n');
fprintf(1, 'Press any key when ready. ^C to abort.\n'); 60
pause;
while (˜got one)

%Acquire waveform from tektronix scope, transfer data via serial into matlab
[w1, w2, w3, w4, increment] = tds sample;

%get phase measurements from correlation and shift method
phases1 = US correlate(w1, w2, w3, w4, increment, false);

% prevent divide by zeros by adding tiny values to the phase matrix
phases1 = phases1 + (ones(4).∗1e−12); 70

%detect errors on this phase measurement
error1 = error detect(phases1);
if ˜error1

b1 compass = position solver(phases1, distance1);
got one = true;
fprintf(1, '\n=> Got estimate for beacon1 position.\n')

else
fprintf(1, 'Cannot estimate beacon1 position:\nTo try again, hit any key. ^C to give up.');
pause; 80

end
end

81

% repeat procedure for beacon2
fprintf(1, '\n\n\n::: Attempting to estimate beacon2 position :::\n');
fprintf(1, 'Turn BEACON2 on. Make sure all other beacons are OFF.\n');
fprintf(1, 'Press any key when ready. ^C to abort.\n');
pause;
while (˜got two)

[w1, w2, w3, w4, increment] = tds sample; 90
phases2 = US correlate(w1, w2, w3, w4, increment, false);
phases2 = phases2 + (ones(4).∗1e−12);
error2 = error detect(phases2);
if ˜error2

b2 compass = position solver(phases2, distance2);
got two = true;
fprintf(1, '\n=> Got estimate for beacon2 position.\n')

else
fprintf(1, 'Cannot estimate beacon2 position:\nTo try again, hit any key. ^C to give up.');

pause; 100
end

end

% output to command window
fprintf(1, '\n\n\n::: Registering end-to-end orientation :::\n');
fprintf(1, 'Cricket coordinates: \n');
fprintf(1, 'Beacon1: (%2.2f, %2.2f, %2.2f)\n', b1);
fprintf(1, 'Beacon2: (%2.2f, %2.2f, %2.2f)\n', b2);
fprintf(1, 'Listener: (%2.2f, %2.2f, %2.2f)\n\n', listener);

110
fprintf(1, 'Compass estimates: \n');
fprintf(1, 'Beacon1: (%2.2f, %2.2f, %2.2f)\n', b1 compass);
fprintf(1, 'Beacon2: (%2.2f, %2.2f, %2.2f)\n', b2 compass);
fprintf(1, 'Compass: (0.00, 0.00, 0.00)\n\n');

Compass to Cricket = rotation registration(b1 compass, b2 compass, listener, b1, b2);

% Compass to Cricket is the quaternion converting Compass coordinate space
% into Cricket coordinate space. Its inverse converts in the other
% direction, and represents the orientation of the Compass in Cricket 120
% coordinate space. The inverse of a unit quaternion is also its conjugate;
% I pass the quaternion in physics notation [(x y z), w].
Cricket to Compass = qconj([Compass to Cricket(2:4) Compass to Cricket(1)]);
orientation = [Cricket to Compass(4) Cricket to Compass(1:3)];

% also convert the orientation into the roll-pitch-yaw angles for reference
transformation matrix = x2t([0; 0; 0; 1; Cricket to Compass'],'qua');
rotation parameters = t2x(transformation matrix,'rpy');
rotation parameters = rotation parameters.∗(180/pi);
fprintf(1, 'Rotation in R-P-Y angles (euler x-y-z convention):\n'); 130
fprintf(1, 'Roll: %3.1f Pitch: %3.1f Yaw: %3.1f\n', . . .

rotation parameters(5), rotation parameters(6), rotation parameters(7));

function [error] = error detect(phases)

% ERROR DETECT Detect errors in Compass phase measurements.
%
% [ERROR] = ERROR DETECT(PHASES) checks the phases for cycle consistency
% based on Compass sensor array geometry. These consistency checks can
% detect when the phase measurements deviate by a whole period, which can
% happen when using the US CORRELATE phase measurement function.
%
% PHASES is a 4x4 matrix of measured phase differentials of the form: 10
% PHASES = [0 t12 t13 t14; . . .
% -t12 0 t23 t24; . . .
% -t13 -t23 0 t34; . . .
% -t14 -t24 -t34 0];
% where txy is the phase difference from sensor x to sensor y.
%

82

% ERROR is true when the measurements fail the consistency checks.
%
% See also US CORRELATE, EXPECTED PHASE.
% 20
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

fprintf(1, '\n*** Detecting measurement errors ***\n');

% initialize
parityA = true;
parityB = true;
parityC = true; 30
parityD = true;

% allow for some measurement error, but not more than the error caused by
% the phase measurement deviating a whole period from the true value
parity threshold = 10e−6; % 10 microseconds is less than half a period

% check each cycle for consistency
if (((phases(1,3) + phases(3,4)) >= (phases(1,4) − parity threshold)) & . . .

((phases(1,3) + phases(3,4)) <= (phases(1,4) + parity threshold)))
parityA = false; fprintf(1, 'test A pass. '); 40

end
if (((phases(2,3) + phases(3,4)) >= (phases(2,4) − parity threshold)) & . . .

((phases(2,3) + phases(3,4)) <= (phases(2,4) + parity threshold)))
parityB = false; fprintf(1, 'test B pass. ');

end
if (((phases(1,3) + phases(3,2)) >= (phases(1,2) − parity threshold)) & . . .

((phases(1,3) + phases(3,2)) <= (phases(1,2) + parity threshold)))
parityC = false; fprintf(1, 'test C pass. ');

end
if (((phases(1,2) + phases(2,4)) >= (phases(1,4) − parity threshold)) & . . . 50

((phases(1,2) + phases(2,4)) <= (phases(1,4) + parity threshold)))
parityD = false; fprintf(1, 'test D pass. ');

end

% report errors, and guess which measurement might be inconsistent (guess
% is true if there is only one error among the six measurements)
stop = false;
error = false;
if ((˜parityA) & (˜parityB) & (˜parityC) & (˜parityD))

fprintf(1, '\nAll measurements consistent.\n'); 60
stop = true;

end
if ((parityC & parityD) & ˜stop & (˜parityA & ˜parityB))

fprintf(1, '\nPair 1 might be inconsistent.\n');
stop = true; error = true;

end
if ((parityA & parityC) & ˜stop & (˜parityB & ˜parityD))

fprintf(1, '\nPair 2 might be inconsistent.\n');
stop = true; error = true;

end 70
if ((parityA & parityD) & ˜stop & (˜parityB & ˜parityC))

fprintf(1, '\nPair 3 might be inconsistent.\n');
stop = true; error = true;

end
if ((parityB & parityC) & ˜stop & (˜parityA & ˜parityD))

fprintf(1, '\nPair 4 might be inconsistent.\n');
stop = true; error = true;

end
if ((parityB & parityD) & ˜stop & (˜parityA & ˜parityC))

fprintf(1, '\nPair 5 might be inconsistent.\n'); 80
stop = true; error = true;

end
if ((parityA & parityB) & ˜stop & (˜parityC & ˜parityD))

fprintf(1, '\nPair 6 might be inconsistent.\n');

83

stop = true; error = true;
end

if error
fprintf(1, 'Error detected!\n');

end 90
if ˜stop

fprintf(1, 'Inconsistent State!\n');
error = true;

end

function [phases] = expected phase(beacon)

% EXPECTED PHASE Cricket Compass utility function
%
% [PHASES] = EXPECTED PHASE(BEACON) generates the expected phase
% measurements on the Compass sensor array.
%
% BEACON is [x y z] coordinate vector of a beacon using the Compass
% coordinate space.
% 10
% PHASES is a 4x4 matrix of measured phase differentials of the form:
% PHASES = [0 t12 t13 t14; . . .
% -t12 0 t23 t24; . . .
% -t13 -t23 0 t34; . . .
% -t14 -t24 -t34 0];
% where txy is the phase difference from sensor x to sensor y.
%
% This function converts distances into phases using predefined speed of
% sound.
% This function has a predefined sensor array geometry. 20
% All distances are in meters, and all times are in seconds.
%
% See also ARRAY GRAPH PLOT, POSITION SOLVER.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

speed sound = 344; % speed of sound 344 m/s at approx 22C
30

% define sensor array geometry. each row corresponds to x,y,z position of
% sensor# where #=row. sensor3 lies at the origin. conversion from circuit
% board layout inter-hole spacing is 4 units = 2.54mm
sensor= [−14 −8 0; 14 −8 0; 0 0 0; 0 16 0] .∗ (2.54e−3 / 4);

% calculate exact distance of each sensor to beacon
d1 = norm(beacon − sensor(1,:));
d2 = norm(beacon − sensor(2,:));
d3 = norm(beacon − sensor(3,:));
d4 = norm(beacon − sensor(4,:)); 40

% convert differential distance into phase differences
t12 = (d2 − d1) / speed sound;
t13 = (d3 − d1) / speed sound;
t14 = (d4 − d1) / speed sound;
t23 = (d3 − d2) / speed sound;
t24 = (d4 − d2) / speed sound;
t34 = (d4 − d3) / speed sound;

% package phase information into phase matrix 50

phases = [0 t12 t13 t14; −t12 0 t23 t24; −t13 −t23 0 t34; −t14 −t24 −t34 0];

function [position 3d] = position solver(phases, d measured)

84

% POSITION SOLVER Localize a beacon from Compass measurements.
%
% [POSITION 3D] = POSITION SOLVER(PHASES, D MEASURED) generates estimate
% for the position of a beacon based on the measured phase differences
% received on the Compass ultrasound sensor array.
%
% PHASES is a 4x4 matrix of measured phase differentials of the form:
% PHASES = [0 t12 t13 t14; . . . 10
% -t12 0 t23 t24; . . .
% -t13 -t23 0 t34; . . .
% -t14 -t24 -t34 0];
% where txy is the phase difference from sensor x to sensor y.
% D MEASURED is the measured distance to the beacon.
%
% POSITION 3D is the estimated [x y z].
%
% This function converts phases into distances using predefined speed of
% sound. 20
% This function has a predefined sensor array geometry.
% All distances are in meters, and all times are in seconds.
%
% See also US CORRELATE, EXPECTED PHASE.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

fprintf(1, '\n*** Estimating beacon position ***\n'); 30

%use voting algorithm to bootstrap which pairs to use for position solving
[pairA, pairB, pairC] = voting(phases, false);

%solve for position estimates using each combination of sensor pairs
pos1 = position solve 1(phases, d measured, pairA, pairB);
pos2 = position solve 1(phases, d measured, pairB, pairC);
pos3 = position solve 1(phases, d measured, pairA, pairC);

% display estimates in MATLAB command window 40
fprintf(1, 'xyz est from pairs %g+%g: (%2.3f, %2.3f, %2.3f) meters, ', pairA, pairB, pos1);
fprintf(1, '%3.1f degrees in compass xy plane\n', atan2(pos1(2),pos1(1))∗180/pi);
fprintf(1, 'xyz est from pairs %g+%g: (%2.3f, %2.3f, %2.3f) meters, ', pairB, pairC, pos2);
fprintf(1, '%3.1f degrees in compass xy plane\n', atan2(pos2(2),pos2(1))∗180/pi);
fprintf(1, 'xyz est from pairs %g+%g: (%2.3f, %2.3f, %2.3f) meters, ', pairA, pairC, pos3);
fprintf(1, '%3.1f degrees in compass xy plane\n', atan2(pos3(2),pos3(1))∗180/pi);

% average position estimates. in the future, a heuristic might be used to
% pick the best position estimate instead of averaging
position 3d = (pos1+pos2+pos3)./3; 50

%%% Subfunction: postion solve 1 %%%
% subfunction for getting the (x,y,z) position vector of a beacon given the
% phase measurements, a distance estimate, and the two sensor pairs to use
function [orientation vector] = position solve 1(phases, distance, pair0, pair1)

speed sound = 344;

% define sensor array geometry. each row corresponds to x,y,z position of
% sensor# where #=row. sensor3 lies at the origin. conversion from circuit 60
% board layout inter-hole spacing is 4 units = 2.54mm
sensor= [−14 −8 0; 14 −8 0; 0 0 0; 0 16 0] .∗ (2.54e−3 / 4);

% create direction vectors for each sensor pair
for i = 1:3

dir vector(i,:) = sensor((i+1),:) − sensor(1,:); % 1-2, 1-3, 1-4
end
for i = 4:5

dir vector(i,:) = sensor((i−1),:) − sensor(2,:); % 2-3, 2-4
end 70

85

dir vector(6,:) = sensor(4,:) − sensor(3,:); % 3-4

% calculate separation distances and directio unit vectors
for i = 1:6

dir vector norm(i,:) = dir vector(i,:) ./ norm(dir vector(i,:));
separation(i,1) = norm(dir vector(i,:));

end

% calculate beacon position using two pairs of sensors:
80

% 0. get the actual sensor numbers that constitute each pair
[i0, j0] = select sensors(pair0);
[i1, j1] = select sensors(pair1);

% 1. find the projection of the vector to the beacon onto the direction
% vectors of the sensor pairs (using the differential distance):
proj0 = −dir vector norm(pair0,:) .∗ (distance ∗ (phases(i0, j0) ∗ . . .

speed sound / separation(pair0, 1)));

proj1 = −dir vector norm(pair1,:) .∗ (distance ∗ (phases(i1, j1) ∗ . . . 90
speed sound / separation(pair1, 1)));

% 2. find the intersection of the lines normal to the projections, passing
% through the endpoint of the projection.
p1 = proj0; % endpoint of proj is one point on line
p2 = [−proj0(2) proj0(1) 0]; % vec(-y, x) perpendicular to vec(x, y)
p2 = p2 + p1; % find other point on line

p3 = proj1;
p4 = [−proj1(2) proj1(1) 0]; 100
p4 = p4 + p3;

% points determine vectors; find u1, the scaling factor to intersect them
u1 = (((p4(1)−p3(1))∗(p1(2)−p3(2)) − (p4(2)−p3(2))∗(p1(1)−p3(1))) / . . .

((p4(2)−p3(2))∗(p2(1)−p1(1)) − (p4(1)−p3(1))∗(p2(2)−p1(2))));

x calc = p1(1) + u1∗(p2(1) − p1(1));
y calc = p1(2) + u1∗(p2(2) − p1(2));
z calc = sqrt(distance^2 − (x calc)^2 − (y calc)^2);

110
orientation vector = [x calc y calc z calc];
%%% End of subfunction: position solve 1 %%%

%%% Subfunction: select sensors %%%
% subfunction for giving back the sensor numbers that correspond to the named pairs
function [i, j] = select sensors(pair);
lookup table = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
i = lookup table(pair, 1);
j = lookup table(pair, 2);

%%% End of subfunction: select sensors %%% 120

function [rotation quat] = rotation registration(pos1, pos2, listener, beacon1, beacon2)

% ROTATION REGISTRATION Find quaternion converting Compass coordinates to
% Cricket coordinates.
%
% [ROTATION QUAT] = ROTATION REGISTRATION(POS1, POS2, LISTENER, BEACON1, BEACON2)
% applies Berthold Horn’s algorithm to three points in Compass and
% Cricket coordinates to find the rotation from Compass coordinates into
% Cricket coordinates. The three points are two beacons and the Compass.
% 10
% POS1 [x y z], beacon1 position in ∗compass∗ coordinates
% POS2 [x y z], beacon2 position in ∗compass∗ coordinates
% LISTENER [x y z], listener position in ∗cricket∗ coordinates
% BEACON1 [x y z], beacon1 position in ∗cricket∗ coordinates
% BEACON2 [x y z], beacon2 position in ∗cricket∗ coordinates

86

%
% ROTATION QUAT [w x y z], quaternion that represents rotation from
% Compass coordinate system into Cricket coordinate system.
%
% Package: Cricket Compass MATLAB 20
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

% by definition, compass/listener position in compass coords is (0,0,0)
compass pos = [0 0 0];

% remove the centroids from the measurements
compass centroid = (compass pos + pos1 + pos2)./3;
compass pos = compass pos − compass centroid;
pos1 = pos1 − compass centroid; 30
pos2 = pos2 − compass centroid;

cricket centroid = (listener + beacon1 + beacon2)./3;
listener = listener − cricket centroid;
beacon1 = beacon1 − cricket centroid;
beacon2 = beacon2 − cricket centroid;

%%% calculate rotation to register the two planes

%1. find normal vectors, and unit normals: 40
n compass = cross(pos2, pos1);
n cricket = cross(beacon2, beacon1);
n compass hat = n compass ./ norm(n compass);
n cricket hat = n cricket ./ norm(n cricket);

%2. find line of intersection between both planes
a = cross(n compass, n cricket);
a hat = a ./ (norm(a)+1e−12);

%3. calculate phi, the angle to rotate the normals into alignment 50
cos phi = dot(n compass hat, n cricket hat);
sin phi = norm(cross(n compass hat, n cricket hat));

% use half-angle formulas to avoid trig functions
cos phi 2 = sqrt((1 + cos phi)/2);
sin phi 2 = sin phi / sqrt(2∗(1+cos phi));

quat a = [cos phi 2 sin phi 2∗a hat];
% NOTE: ’quat a’ is in standard [w x y z] quaternion notation

60
% convert to physics notation [x y z w] to use in quaternion package:
quat a working = [sin phi 2∗a hat cos phi 2];

% 4. apply first rotation to compass coordinates;
% this brings the plane of compass coordinates into the plane of cricket
% coordinates
compass pos rotate1 = qvrot(quat a working, compass pos);
pos1 rotate1 = qvrot(quat a working, pos1);
pos2 rotate1 = qvrot(quat a working, pos2);

70

%%% calculate rotation vector within the plane to minimize square of
%%% distances between points

% maximize Ccos(theta) + Ssin(theta) by computing maximums for sin(theta)
% based on S and C

C = dot(compass pos rotate1, listener) + dot(pos1 rotate1, beacon1) + dot(pos2 rotate1, beacon2);
S = dot((cross(listener, compass pos rotate1) + cross(beacon1, pos1 rotate1) + . . .

cross(beacon2, pos2 rotate1)), n cricket hat); 80

sin theta = S / sqrt(S^2 + C^2);
cos theta = C / sqrt(S^2 + C^2);

87

cos theta 2 = sqrt((1 + cos theta)/2);
sin theta 2 = sin theta / sqrt(2∗(1+cos theta));

quat p = [cos theta 2 −sin theta 2∗n cricket hat];
quat p working = [−sin theta 2∗n cricket hat cos theta 2];

90
% find the overall rotation by multiplying the two quaternions
quat working = qmult(quat p working, quat a working);
rotation quat = [quat working(4) quat working(1:3)];
fprintf(1, 'Compass to Cricket quaternion: (%2.2f, %2.2fi + %2.2fj + %2.2fk)\n', . . .

quat working(4), quat working(1), quat working(2), quat working(3));

function [wave1, wave2, wave3, wave4, time increment] = tds sample()

% TDS SAMPLE Acquire TDS2024 oscilloscope waveforms.
%
% [WAVE1, WAVE2, WAVE3, WAVE4, TIME INCREMENT] = TDS SAMPLE
% puts the oscilloscope into waveform single sequence acquire mode and
% captures the waveforms on the four channels as soon as a signal
% triggers the scope.
%
% WAVE1, WAVE2, WAVE3, WAVE4 are 2500 sample vectors containing the 10
% voltage values of the captured waveforms.
%
% TIME INCREMENT is the time increment in seconds between each sample.
%
% This function requires the MATLAB Instrument Control Toolbox.
% This function assumes that each channel is set at the same
% voltage/division settings. It uses the channel 1 volt/div setting.
%
% Oscilloscope: Tektronix TDS2024 with TDS2CMAX comm module
% Connection: RS-232 cable to host computer on COM2 20
% Scope Settings: Baud Rate: 19,200
% Flow Control: Hardware Flagging
% EOL String: LF
% Parity: None
%
% For scope programming reference, see the TDS2000-Series Programmer
% Manual.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu 30
% Date: 2004/05/23

tic;
fprintf(1, '\n*** Sampling waveforms on TDS2024 ***\n');

% initialize scope object
scope = serial('COM2');
set(scope, 'BaudRate', 19200);
set(scope, 'InputBufferSize', 100000);
set(scope, 'FlowControl', 'hardware'); 40

fopen(scope);
check errors(scope);

% set waveform capture parameters
fprintf(scope, 'DAT:WID 1'); % set data width to 1
fprintf(scope, 'DAT:ENC RIB'); % set data encoding: sign int, big Endian

% put the scope into single acquire mode
fprintf(scope, 'ACQ:MOD SAM'); 50
fprintf(scope, 'ACQ:STOPA SEQ');
fprintf(scope, 'ACQ:STATE RUN');
fprintf(scope, '*WAI');

88

% get time increment in seconds
fprintf(scope, 'WFMP:XIN?');
time increment = fscanf(scope, '%E');

% dump binary waveform data from each channel
fprintf(scope, 'DAT:SOU CH1'); %select ch1 as data source 60
fprintf(scope, 'CURV?'); %get dump from scope
fscanf(scope, '%c', 2); %discard ’#X’ in curve preamble
binsize = fscanf(scope, '%d', 4); %find out data size
wave1 = fread(scope, binsize, 'int8'); %get binary waveform data
fgets(scope); %clear any other data

fprintf(scope, 'DAT:SOU CH2');
fprintf(scope, 'CURV?');
fscanf(scope, '%c', 2);
binsize = fscanf(scope, '%d', 4); 70
wave2 = fread(scope, binsize, 'int8');
fgets(scope);

fprintf(scope, 'DAT:SOU CH3');
fprintf(scope, 'CURV?');
fscanf(scope, '%c', 2);
binsize = fscanf(scope, '%d', 4);
wave3 = fread(scope, binsize, 'int8');
fgets(scope);

80
fprintf(scope, 'DAT:SOU CH4');
fprintf(scope, 'CURV?');
fscanf(scope, '%c', 2);
binsize = fscanf(scope, '%d', 4);
wave4 = fread(scope, binsize, 'int8');
fgets(scope);

% get waveform capture parameters to convert Y bit values into voltages
Ymultiple = query(scope, 'WFMP:CH1:YMU?', '%s\n', '%E');
Yoffset = query(scope, 'WFMP:CH1:YOF?', '%s\n', '%E'); 90
Yzero = query(scope, 'WFMP:CH1:YZE?', '%s\n', '%E');

% convert the bit values into voltage values
wave1 = ((wave1 − Yoffset) .∗ Ymultiple) + Yzero;
wave2 = ((wave2 − Yoffset) .∗ Ymultiple) + Yzero;
wave3 = ((wave3 − Yoffset) .∗ Ymultiple) + Yzero;
wave4 = ((wave4 − Yoffset) .∗ Ymultiple) + Yzero;

% cleanup
check errors(scope); 100
fclose(scope);
delete(scope);
clear scope;

% output messages to matlab command window
fprintf(1, 'time increment is: %g microseconds\n', time increment∗1e6);
toc sample = toc;
fprintf(1, 'sample and transfer completed in: %g seconds\n', toc sample);

% check error(s) sub-function checks for msgs then clears them from queue 110
function check errors(s)

fprintf(s, '*esr?');
esr = fscanf(s);
if (esr ˜= '0') % if the esr register indicates a message,

fprintf(s, 'allev?');
allev = fscanf(s);
fprintf(1, 'scope says: %s', allev);

end

%%% utility functions %%% 120
% synchronization utility

89

%fprintf(scope, ’∗OPC?’);
%fscanf(scope);

% verify scope connectivity:
%fprintf(scope, ’ID?’);

%scopeID = fscanf(scope)

function [phases] = US correlate(w1, w2, w3, w4, increment, corr plot on);

% US CORRELATE Find the phase difference between four ultrasound waves.
%
% [PHASES] = US CORRELATE(W1, W2, W3, W4, INCREMENT, CORR PLOT ON)
% finds the relative phase differences between four
%
% W1, W2, W3, W4 are vectors containing the sample values of waveforms.
% INCREMENT is the time increment in seconds between samples.
% CORR PLOT ON is a boolean turning plots of the cross correlation 10
% curves on and off. Use true to turn plotting on.
%
% PHASES is a 4x4 matrix of measured phase differentials of the form:
% PHASES = [0 t12 t13 t14; . . .
% -t12 0 t23 t24; . . .
% -t13 -t23 0 t34; . . .
% -t14 -t24 -t34 0];
% where txy is the phase difference from sensor x to sensor y.
%
% See also ARRAY GRAPH PLOT, US TIME SHIFT. 20
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

fprintf(1, '\n*** Measuring phase differentials ***\n');

% set correlation/plot parameters
speed sound = 344;

30
periods = 10.239e−3/ (speed sound/40e3) ∗ 2; % convert physical sensor
xmin = −25e−6 ∗ periods / 2; % spacing to constrain
xmax = −xmin; % time delay search space
ymin = −1;
ymax = 1;

periods2 = 17.78e−3/ (speed sound/40e3) ∗ 2;
xmin2 = −25e−6 ∗ periods2 / 2;
xmax2 = −xmin2;

40
% if display is on, plot the six correlation curves
if corr plot on

corr plot fig = figure;
set(corr plot fig, 'Name', 'Shift+Correlate');
max corr marker = 'rx';

end

fprintf(1, 'Correlating: ');
[T12, R12, t12, c12] = US time shift(w1, w2, increment, periods2);
if corr plot on 50

subplot(2,3,1), plot(T12, R12), title('sensor pair 1-2', 'FontSize', 7);
format corr plot(xmin2, xmax2, ymin, ymax);
ylabel('normalized cross correlation');
hold on; plot(t12, c12, max corr marker);

end
fprintf(1, '1-2 '); % indicate in command window that search finished

[T13, R13, t13, c13] = US time shift(w1, w3, increment, periods);
if corr plot on

90

subplot(2,3,2), plot(T13, R13), title('sensor pair 1-3', 'FontSize', 7); 60
format corr plot(xmin, xmax, ymin, ymax);
xlabel('wave2 time shift (\mus)');
hold on; plot(t13, c13, max corr marker);

end
fprintf(1, '1-3 ');

[T14, R14, t14, c14] = US time shift(w1, w4, increment, periods2);
if corr plot on

subplot(2,3,3), plot(T14, R14), title('sensor pair 1-4', 'FontSize', 7);
format corr plot(xmin2, xmax2, ymin, ymax); 70
hold on; plot(t14, c14, max corr marker);

end
fprintf(1, '1-4 ');

[T23, R23, t23, c23] = US time shift(w2, w3, increment, periods);
if corr plot on

subplot(2,3,4); plot(T23, R23), title('sensor pair 2-3', 'FontSize', 7);
format corr plot(xmin, xmax, ymin, ymax);
ylabel('normalized cross correlation');
hold on; plot(t23, c23, max corr marker); 80

end
fprintf(1, '2-3 ');

[T24, R24, t24, c24] = US time shift(w2, w4, increment, periods2);
if corr plot on

subplot(2,3,5), plot(T24, R24), title('sensor pair 2-4', 'FontSize', 7);
format corr plot(xmin2, xmax2, ymin, ymax);
xlabel('wave2 time shift (\mus)');
hold on; plot(t24, c24, max corr marker);

end 90
fprintf(1, '2-4 ');

[T34, R34, t34, c34] = US time shift(w3, w4, increment, periods);
if corr plot on

subplot(2,3,6), plot(T34, R34), title('sensor pair 3-4', 'FontSize', 7);
format corr plot(xmin, xmax, ymin, ymax);
hold on; plot(t34, c34, max corr marker);

end
fprintf(1, '3-4\n');

100
% output recorded phase information
phases = [0 t12 t13 t14; . . .

−t12 0 t23 t24; . . .
−t13 −t23 0 t34; . . .
−t14 −t24 −t34 0];

phases = phases'; % flip-flop because of change in notation

% sub-function for setting up correlation curve plot formatting options
function format corr plot(xmin, xmax, ymin, ymax)
axis([xmin xmax ymin ymax]); 110
set(gca, 'FontSize', 7);
set(gca, 'XTick', [−50 −25 0 25 50].∗1e−6);
set(gca, 'XTickLabel', '-50|-25|0|25|50');

set(gca, 'YTick', [−1 −0.5 0 0.5 1]);

function [T, R, at t, at c] = US time shift(wave1, wave2, increment, periods)

% US TIME SHIFT Find the time delay between two ultrasound waveforms.
%
% [T, R, AT T, AT C] = US TIME SHIFT(WAVE1, WAVE2, INCREMENT, PERIODS)
% finds the time shift of WAVE2 that maximally correlates WAVE2 with
% WAVE1.
%
% WAVE1, WAVE2 are vectors containing the sample values of two waveforms.
% INCREMENT is the time increment in seconds between samples. 10

91

% PERIODS specifies the maximum sample delay to shift the waveforms in
% ultrasound periods. i.e. if periods=2, I shift WAVE2 over a range
% [-one period, +one period].
%
% T is the time vector representing the range of time shifts searched.
% R is the correlation vector representing the correlation of the two
% waveforms at each time shift. A plot of R vs. T produces the
% correlation curve.
% AT T is the time shift of WAVE2 that maximally correlates WAVE2 with
% WAVE1. 20
% AT C is the maximum normalized cross correlation between WAVE1 and
% WAVE1, which occurs for the time shift AT T applied to WAVE2.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

% shift forward by half of the desired # of periods; shift backward by the
% other half
shifts = floor(periods∗25e−6/increment)+1; 30
half shifts = shifts/2;

% do correlation for no shift
temp R = corrcoef(wave1, wave2);
R = temp R(2, 1);

% find correlation for each sample shift ∗forward∗ of wave2
R fwd = [];
for i = 1:(half shifts)

temp R = corrcoef(US zero fwd(wave1, i), US shift fwd(wave2, i)); 40
R fwd = [R fwd; temp R(2, 1)];

end

% find correlation for each sample shift ∗backward∗ of wave2
R bwd = [];
for i = 1:(half shifts)

temp R = corrcoef(US zero bwd(wave1, i), US shift bwd(wave2, i));
R bwd = [R bwd; temp R(2, 1)];

end
50

R = [flipud(R bwd); R; R fwd];
temp t = create tvector(half shifts, increment);
[at t, at c] = max shift index(temp t, R);
T = temp t;

% subfunction: shifts a US wave by INCR samples forward
function a = US shift fwd(input, incr)
z = zeros(incr);
z = z(1:incr, 1);
a = [z; input(1:(length(input)−incr), 1)]; 60

% subfunction: shifts a US wave by INCR samples backward
function b = US shift bwd(input, incr)
z = zeros(incr);
z = z(1:incr, 1);
b = [input((1+incr):length(input), 1); z];

% subfunction: zero out a US wave by INCR samples forward
function a = US zero fwd(input, incr)
input(1:incr, 1) = 0; 70
a = input;

% subfunction: zero out a US wave by INCR samples backward
function b = US zero bwd(input, incr)
input((length(input)−incr+1):length(input), 1) = 0;
b = input;

% subfunction: creates the time index vector

92

function t = create tvector(half shifts, incr)
temp t1 = [1:half shifts]; 80
temp t2 = fliplr(temp t1).∗(−1);
t = [temp t2 0 temp t1].∗incr;

% subfunction: outputs maximum correlated time shift using inputs
% of index time vector and correlations
function [t cmax, cmax] = max shift index(t vector, c vector)
[cmax, I] = max(c vector);

t cmax = t vector(1, I);

function [pairA, pairB, pairC] = voting(phases, plot on);

% VOTING Pick 3 accurate sensor pairs.
%
% [PAIRA, PAIRB, PAIRC] = VOTING(PHASES, PLOT ON) uses the sign of the
% phase measurements between sensors to localize a beacon to a 30 degree
% sector. It then returns the three sensor pairs that are accurate for
% localizing the beacon precisely in that sector.
%
% PAIRA, PAIRB, PAIRC are the 3 accurate sensor pairs. There are six 10
% sensor pairs on the Compass array, numbered 1, 2, 3, 4, 5, 6.
%
% PHASES is a 4x4 matrix of measured phase differentials of the form:
% PHASES = [0 t12 t13 t14; . . .
% -t12 0 t23 t24; . . .
% -t13 -t23 0 t34; . . .
% -t14 -t24 -t34 0];
% where txy is the phase difference from sensor x to sensor y.
% PLOT ON is a boolean turning the compass plot of the sensor voting
% on and off. Use true to turn plotting on. 20
%
% This function uses the predefined sensor array geometry.
%
% See also POSITION SOLVER, US CORRELATE, EXPECTED PHASE.
%
% Package: Cricket Compass MATLAB
% Author: Kevin J Wang, kevin1@graphics.csail.mit.edu
% Date: 2004/05/23

votes = repmat([0], 1, 360); % a vector to hold the votes 30

% For each pair of sensors, use the sign to localize the beacon position to
% one side of the array, which is a 180 degree range.
% The voting is messy because the degree ranges must wrap around at 0=360
% degrees.
if (phases(1,2) < 0)

votes(1, 1: 90) = votes(1, 1: 90) + 1;
votes(1, 272:360) = votes(1, 272:360) + 1;

else
votes(1, 92:270) = votes(1, 92:270) + 1; 40

end

if (phases(1,3) < 0)
votes(1, 1:120) = votes(1, 1:120) + 1;
votes(1, 302:360) = votes(1, 302:360) + 1;

else
votes(1, 122:300) = votes(1, 122:300) + 1;

end

if (phases(1,4) < 0) 50
votes(1, 1:150) = votes(1, 1:150) + 1;
votes(1, 332:360) = votes(1, 332:360) + 1;

else
votes(1, 152:330) = votes(1, 152:330) + 1;

end

93

if (phases(3,4) < 0)
votes(1, 2:180) = votes(1, 2:180) + 1;

else
votes(1, 182:360) = votes(1, 182:360) + 1; 60

end

if (phases(2,4) < 0)
votes(1, 32:210) = votes(1, 32:210) + 1;

else
votes(1, 212:360) = votes(1, 212:360) + 1;
votes(1, 1: 30) = votes(1, 1: 30) + 1;

end

if (phases(2,3) < 0) 70
votes(1, 62:240) = votes(1, 62:240) + 1;

else
votes(1, 242:360) = votes(1, 242:360) + 1;
votes(1, 1: 60) = votes(1, 1: 60) + 1;

end

if plot on
radians = [0:1:359].∗(pi/180);
[x, y] = pol2cart(radians, votes);
compass(x, y); % use a compass plot to generate the radial shape 80

end

% I want to avoid edge conditions where the 30 degree sectors overlap. I
% look at increments of every 5 degrees and use the first increment off the
% center of each sector to label that sector. For example, the sector [345,
% 15] is labeled as 5 and [75, 105] is labeled as 95, etc.
degrees = [0:1:359];
shift degrees = degrees(1, 5:360); % take every fifth degree
shift votes = votes(1, 5:360); %

90
select degrees = shift degrees(2:30:356); % extract the degree label for
select votes = shift votes(2:30:356); % the thirty degree sectors

[C, I] = max(select votes); % find the sector with the
max degree = select degrees(1, I); % largest number of votes

% now that I have localized the 30 degree sector, I essentially do a table
% lookup to return the three sensor pairs which are accurate in that sector
switch (max degree)

case {5, 185} 100
pairA = 3; pairB = 5; pairC = 6;

case {35, 215}
pairA = 4; pairB = 5; pairC = 6;

case {65, 245}
pairA = 1; pairB = 4; pairC = 5;

case {95, 275}
pairA = 1; pairB = 2; pairC = 4;

case {125, 305}
pairA = 1; pairB = 2; pairC = 3;

case {155, 335} 110
pairA = 2; pairB = 3; pairC = 6;

otherwise
fprintf(1, 'Voting algorithm failed!\n');

end

fprintf(1, 'pairs selected by vote: %g %g %g \n', pairA, pairB, pairC);

94

Bibliography

[1] Ascension Technology. http://www.ascension-tech.com/, 2004.

[2] Northern Digital Inc. - Aurora. http://www.ndigital.com/aurora.html, 2004.

[3] E. Foxlin, M. Harrington, and G. Pfeiffer. Constellation: A Wide-Range Wireless

Motion-Tracking System for Augmented Reality and Virtual Set Applications. In Proc.

ACM SIGGRAPH, Orlando, FL, July 1998.

[4] J. Gray. Olinde Rodrigues’ paper of 1840 on transformation groups. Archive for History

of Exact Sciences, 21:375–385, 1980.

[5] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quater-

nions. Journal of the Optical Society of America A, 4, April 1987.

[6] Polhemus - Products. http://www.polhemus.com/Products.htm, 2004.

[7] Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, and Seth J. Teller. The

Cricket Compass for Context-Aware Mobile Applications. In Mobile Computing and

Networking, pages 1–14, 2001.

[8] Seth Teller, Jiawen Chen, and Hari Balakrishnan. Pervasive pose-aware applica-

tions and infrastructure. In IEEE Computer Graphics and Applications, pages 14–18,

July/August 2003.

[9] Nicholas Vallidis. WHISPER: A Spread Spectrum Approach to Occlusion in Acoustic

Tracking. PhD thesis, University of North Carolina at Chapel Hill, Department of

Computer Science, 2002.

[10] Greg Welch, Gary Bishop, Leandra Vicci, Stephen Brumback, Kurtis Keller, and

D’nardo Colucci. The HiBall tracker: High-performance wide-area tracking for vir-

95

tual and augmented environments. In Proceedings of the ACM Symposium on Virtual

Reality Software and Technology, December 1999.

[11] Greg Welch and Eric Foxlin. Motion Tracking: No Silver Bullet, but a Respectable

Arsenal. In IEEE Computer Graphics and Applications, special issue on “Tracking”,

pages 34–38, November/December 2002.

96

